Abstract
In situ attenuated total reflection Fourier transform infrared spectroscopy was used to study the H bonding on the surfaces of a-Si:H and nc-Si:H during plasma enhanced chemical vapor deposition from SiH4/H2/Ar containing discharges. Well-resolved SiHx (1≤x≤3) absorption lines that correspond to the vibrational frequencies commonly associated with surface silicon hydrides were detected. During deposition of a-Si:H films using SiH4 without H2 dilution, the surface coverage was primarily di- and trihydrides, and there are very few dangling bonds on the surface. In contrast, during deposition of nc-Si:H using SiH4 diluted with H2, the amount of di- and trihydrides on the surface is drastically reduced and monohydrides dominate the surface. Furthermore, the vibrational frequencies of the monohydrides on nc-Si:H film surfaces match well with the resonant frequencies of monohydrides on H terminated Si (111) and Si (100) surfaces. The decrease of higher hydrides on the surface upon H2 dilution is attributed to increased dissociation rate of tri- and dihydrides on the surface through reaction with dangling bonds created by increased rate of H abstraction from the surface. Results presented are consistent with SiH3 being at least one of the precursors of a-Si:H deposition.
Original language | English (US) |
---|---|
Pages (from-to) | 3199-3210 |
Number of pages | 12 |
Journal | Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films |
Volume | 16 |
Issue number | 6 |
DOIs | |
State | Published - 1998 |