Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells

Hyunju Cho, Ming Wu, Linxia Zhang, Ryan Thompson, Aritro Nath, Christina Chan

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Background: Palmitic acid, the most common saturated free fatty acid, has been implicated in ER (endoplasmic reticulum) stress-mediated apoptosis. This lipoapotosis is dependent, in part, on the upregulation of the activating transcription factor-4 (ATF4). To better understand the mechanisms by which palmitate upregulates the expression level of ATF4, we integrated literature information on palmitate-induced ER stress signaling into a discrete dynamic model. The model provides an in silico framework that enables simulations and predictions. The model predictions were confirmed through further experiments in human hepatocellular carcinoma (HepG2) cells and the results were used to update the model and our current understanding of the signaling induced by palmitate.Results: The three key things from the in silico simulation and experimental results are: 1) palmitate induces different signaling pathways (PKR (double-stranded RNA-activated protein kinase), PERK (PKR-like ER kinase), PKA (cyclic AMP (cAMP)-dependent protein kinase A) in a time dependent-manner, 2) both ATF4 and CREB1 (cAMP-responsive element-binding protein 1) interact with the Atf4 promoter to contribute to a prolonged accumulation of ATF4, and 3) CREB1 is involved in ER-stress induced apoptosis upon palmitate treatment, by regulating ATF4 expression and possibly Ca2+ dependent-CaM (calmodulin) signaling pathway.Conclusion: The in silico model helped to delineate the essential signaling pathways in palmitate-mediated apoptosis.

Original languageEnglish (US)
Article number9
JournalBMC Systems Biology
Volume7
DOIs
StatePublished - Jan 22 2013

Bibliographical note

Funding Information:
This study was supported in part by the National Science Foundation (CBET 0941055) and the National Institutes of Health (R01GM079688 and 1R01GM089866).

Keywords

  • ATF4
  • CREB1
  • Discrete dynamic model
  • Palmitate-induced ER stress
  • Signal transduction

Fingerprint

Dive into the research topics of 'Signaling dynamics of palmitate-induced ER stress responses mediated by ATF4 in HepG2 cells'. Together they form a unique fingerprint.

Cite this