TY - GEN
T1 - SHAREK
T2 - 16th IEEE International Conference on Mobile Data Management, MDM 2015
AU - Cao, Bin
AU - Alarabi, Louai
AU - Mokbel, Mohamed F
AU - Basalamah, Anas
N1 - Publisher Copyright:
© 2015 IEEE.
Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.
PY - 2015/9/11
Y1 - 2015/9/11
N2 - Due to its significant economic and environmental impact, sharing the ride among a number of drivers (i.e., Car pooling) has recently gained significant interest from industry and academia. Hence, a number of ride sharing services have appeared along with various algorithms on how to match a rider request to a driver who can provide the ride sharing service. However, existing techniques have several limitations that affect the quality of the ride sharing service, and hence hinder its wide applicability. This paper proposes SHAREK, a scalable and efficient ride sharing service that overcomes the limitations of existing approaches. SHAREK allows riders requesting the ride sharing service to indicate the maximum price they are willing to pay for the service and the maximum waiting time before being picked up. In the mean time, SHAREK computes the price of the service based on the distance of the rider trip and the detour that the driver will make to offer the service. Then, SHAREK returns a set of drivers that can make it to the rider within its price and temporal constraints. Since there could be many of such drivers, SHAREK internally prunes those drivers that are dominated by others, i.e., They provide higher price and higher waiting time than other drivers. To realize its efficiency and scalability, SHAREK employs a set of early pruning techniques that minimize the need for any actual shortest path computations.
AB - Due to its significant economic and environmental impact, sharing the ride among a number of drivers (i.e., Car pooling) has recently gained significant interest from industry and academia. Hence, a number of ride sharing services have appeared along with various algorithms on how to match a rider request to a driver who can provide the ride sharing service. However, existing techniques have several limitations that affect the quality of the ride sharing service, and hence hinder its wide applicability. This paper proposes SHAREK, a scalable and efficient ride sharing service that overcomes the limitations of existing approaches. SHAREK allows riders requesting the ride sharing service to indicate the maximum price they are willing to pay for the service and the maximum waiting time before being picked up. In the mean time, SHAREK computes the price of the service based on the distance of the rider trip and the detour that the driver will make to offer the service. Then, SHAREK returns a set of drivers that can make it to the rider within its price and temporal constraints. Since there could be many of such drivers, SHAREK internally prunes those drivers that are dominated by others, i.e., They provide higher price and higher waiting time than other drivers. To realize its efficiency and scalability, SHAREK employs a set of early pruning techniques that minimize the need for any actual shortest path computations.
UR - http://www.scopus.com/inward/record.url?scp=84958171774&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958171774&partnerID=8YFLogxK
U2 - 10.1109/MDM.2015.12
DO - 10.1109/MDM.2015.12
M3 - Conference contribution
AN - SCOPUS:84958171774
T3 - Proceedings - IEEE International Conference on Mobile Data Management
SP - 4
EP - 13
BT - Proceedings - 2015 IEEE 16th International Conference on Mobile Data Management, MDM 2015
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 15 June 2015 through 18 June 2015
ER -