Sequential binding of calcium leads to dimerization in neural cadherin

Nagamani Vunnam, Susan Pedigo

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Neural cadherin (N-cadherin) is a calcium-dependent homophilic cell-adhesive molecule and critical for synaptogenesis and synapse maintenance. The extracellular region plays an important role in cadherin-mediated cell adhesion and has five tandemly repeated ectodomains (EC1-EC5) with three calcium-binding sites situated between each of these domains. Adhesive dimer formation is significantly dependent on binding of calcium such that mutations in the calcium-binding sites adversely affect cell adhesion. To investigate the relative significance of the calcium-binding sites at the EC1-EC2 interface in calcium-induced dimerization, we mutated three important amino acids, D134, D136, and D103, in NCAD12, a construct containing EC1 and EC2. Spectroscopic and chromatographic experiments showed that all three mutations affected calcium binding and dimerization. Mutation of D134, a bidentate chelator in site 3, severely impaired the binding of calcium to all three sites. These findings confirm that binding to site 3 is required for binding to occur at site 2 and site 1. Interestingly, while the D103A mutation diminished only the affinity for calcium, it completely eliminated dimerization. Equilibrium dialysis experiments showed a stoichiometry of 3 at 2 mM calcium for D103A, but no dimerization was apparent even at 10 mM calcium. These results indicate that calcium binding alone is not sufficient for dimerization but requires cooperativity between calcium-binding sites. In summary, our findings confirm that the calcium-binding sites are occupied sequentially in the order of site 3, then site 2 and site 1, and that cooperativity between site 2 and site 1 is essential for formation of adhesive dimers by N-cadherin.(Figure Presented)

Original languageEnglish (US)
Pages (from-to)2973-2982
Number of pages10
Issue number14
StatePublished - Apr 12 2011


Dive into the research topics of 'Sequential binding of calcium leads to dimerization in neural cadherin'. Together they form a unique fingerprint.

Cite this