Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level

John Martin, Chris Paola, Vitor Abreu, Jack Neal, Ben Sheets

Research output: Contribution to journalArticlepeer-review

93 Scopus citations


Sequence stratigraphy has been applied from reservoir to continental scales, providing a scale-independent model for predicting the spatial arrangement of depositional elements. We examine experimental strata deposited in the Experimental EarthScape facility at St. Anthony Falls Laboratory, focusing on stratigraphie surfaces defined by discordant contact geometries, surfaces analogous to those delineated in the original work on seismic sequence stratigraphy. In this controlled setting, we directly evaluate critical sequence-stratigraphic issues, such as stratigraphie horizon development and time significance, as well as the internal geometry and migration of the bounded strata against the known boundary conditions and depositional history. Four key stratigraphie disconformities defined by marine downlap, marine onlap, fluvial erosion, and fluvial onlap are mapped and vary greatly in their relative degree of time transgression. Marine onlap and downlap contacts closely parallel topographic surfaces (time surfaces) and, prior to burial, approximate the instantaneous offshore topography. These stratalbounding surfaces are also robust stratigraphie signals of relative base-level fall and rise, respectively. Marine onlap surfaces are of special interest. They tend to be the best preserved discordance, where widespread, allogenic-based onlap surfaces subdivide otherwise amalgamated depositional cycles amidst cryptic stacks of marine foresets; however, local, autogenic-based marine onlap discordances are present throughout the fill. A critical distinguishing feature of allogenic onlap is the greater lateral persistence of the discordance. Surfaces defined by subaerial erosional truncation and fluvial onlap do not have geomorphic equivalence because channel processes continually modify the surface as the stratigraphie horizons are forming. Hence, they are strongly time transgressive. Last, the stacking arrangement of the preserved bounded strata is found to be a good time-averaged representation of the mass-balance history.

Original languageEnglish (US)
Pages (from-to)503-533
Number of pages31
JournalAAPG Bulletin
Issue number4
StatePublished - Apr 2009

Bibliographical note

Funding Information:
This work has been supported by the German Research Foundation ‘Deutsche Forschungsgemeinschaft (DFG)’ under the grant SFB 404 ‘Multifield Problems in Continuum Mechanics’ at the University of Stuttgart.


Dive into the research topics of 'Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level'. Together they form a unique fingerprint.

Cite this