Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture

Pratap Tokekar, Joshua Vander Hook, David Mulla, Volkan Isler

Research output: Contribution to journalArticlepeer-review

177 Scopus citations

Abstract

We study two new informative path planning problems that are motivated by the use of aerial and ground robots in precision agriculture. The first problem, termed sampling traveling salesperson problem with neighborhoods (Sampling TSPN), is motivated by scenarios in which unmanned ground vehicles (UGVs) are used to obtain time-consuming soil measurements. The input in SamplingTSPN is a set of possibly overlapping disks. The objective is to choose a sampling location in each disk and a tour to visit the set of sampling locations so as to minimize the sum of the travel and measurement times. The second problem concerns obtaining the maximum number of aerial measurements using an unmanned aerial vehicle (UAV) with limited energy. We study the scenario in which the two types of robots form a symbiotic system - the UAV lands on the UGV, and the UGV transports the UAV between deployment locations. This paper makes the following contributions. First, we present an O(rmax/rmin) approximation algorithm for SamplingTSPN, where rmin and rmax are the minimum and maximum radii of input disks. Second, we show how to model the UAV planning problem using a metric graph and formulate an orienteering instance to which a known approximation algorithm can be applied. Third, we apply the two algorithms to the problem of obtaining ground and aerial measurements in order to accurately estimate a nitrogen map of a plot. Along with theoretical results, we present results from simulations conducted using real soil data and preliminary field experiments with the UAV.

Original languageEnglish (US)
Article number7587351
Pages (from-to)1498-1511
Number of pages14
JournalIEEE Transactions on Robotics
Volume32
Issue number6
DOIs
StatePublished - Dec 2016

Bibliographical note

Funding Information:
This work was supported in part by the National Science Foundation Grant 1111638, Grant 0917676, and Grant 1566247, and in part by the Minnesota Discovery, Research and InnoVation Economy Robotics, Sensors, and Advanced Manufacturing initiative.

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Agriculture
  • path planning
  • robot sensing systems

Fingerprint

Dive into the research topics of 'Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture'. Together they form a unique fingerprint.

Cite this