Semiconducting phase in borophene: Role of defect and strain

Gargee Bhattacharyya, Arup Mahata, Indrani Choudhuri, Biswarup Pathak

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Boron is an interesting element due to its chemical and structural complexity. Recent synthesis of borophene led scientists to study boron monolayer-based materials for various applications. Using density functional theory calculations, nineteen different phases of boron monolayer (with hexagonal hole densities from 1/32-8/32) are studied to understand their origin of buckling, stability, and planarity. Projected densities of states of various phases of borophene-based systems with defect are plotted into in-plane (s + px + py) and out-of-plane (pz) orbitals to understand the role of the σ and π-bands towards their geometry and stability. Interestingly, the λ5-sheet shows semiconducting properties under uniaxial/biaxial tensile/compressive strains and it shows excellent dynamical, thermal, and mechanical properties and is thus a promising semiconducting phase for electronic devices.

Original languageEnglish (US)
Article number405103
JournalJournal of Physics D: Applied Physics
Volume50
Issue number40
DOIs
StatePublished - Sep 11 2017

Bibliographical note

Funding Information:
We thank IIT Indore for the lab and computing facilities. This work is supported by DST-SERB, (Project Number: EMR/2015/002057), New Delhi. GB, AM, and IC thank MHRD for the research fellowships.

Keywords

  • borophene
  • defect
  • hexagonal hole density
  • planar
  • semiconductor

Fingerprint

Dive into the research topics of 'Semiconducting phase in borophene: Role of defect and strain'. Together they form a unique fingerprint.

Cite this