Projects per year
Abstract
Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.
Original language | English (US) |
---|---|
Pages (from-to) | 1498-1504 |
Number of pages | 7 |
Journal | ACS Sensors |
Volume | 2 |
Issue number | 10 |
DOIs | |
State | Published - Oct 27 2017 |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
Keywords
- bicontinuous morphology
- ionic liquids
- miniaturized reference electrodes
- polymerization-induced microphase separation
- RTILs
MRSEC Support
- Shared
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't
- Research Support, U.S. Gov't, Non-P.H.S.
Fingerprint
Dive into the research topics of 'Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation'. Together they form a unique fingerprint.Projects
- 2 Finished
-
University of Minnesota MRSEC (DMR-1420013)
Lodge, T. P. (PI)
11/1/14 → 10/31/20
Project: Research project
-
MRSEC IRG-3: Hierarchical Multifunctional Macromolecular Materials
Reineke, T. M. (Coordinator), Bates, F. S. (Senior Investigator), Dorfman, K. (Senior Investigator), Dutcher, C. S. (Senior Investigator), Hillmyer, M. A. (Senior Investigator), Lodge, T. P. (Senior Investigator), Morse, D. C. (Senior Investigator), Siepmann, I. (Senior Investigator), Barreda, L. (Researcher) & Ganewatta, M. S. (Researcher)
11/1/14 → 10/31/20
Project: Research project