Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism

Alexandra Zanin-Zhorov, Wei Chen, Julien Moretti, Melanie S. Nyuydzefe, Iris Zhorov, Rashmi Munshi, Malavika Ghosh, Cindy Serdjebi, Kelli MacDonald, Bruce R. Blazar, Melissa Palmer, Samuel D. Waksal

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.

Original languageEnglish (US)
Article number1176
JournalCommunications biology
Volume6
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism'. Together they form a unique fingerprint.

Cite this