TY - CHAP
T1 - Selective estrogen modulators as an anticancer tool
T2 - Mechanisms of efficiency and resistance
AU - Sengupta, Surojeet
AU - Jordan, V. Craig
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2008
Y1 - 2008
N2 - The majority of breast cancers are estrogen receptor (ER) positive and depend on estrogen for growth. Therefore, blocking estrogen mediated actions remains the strategy of choice for the treatment and prevention of breast cancer. The selective estrogen receptor modulators (SERMs) are molecules that block estrogen action in breast cancer but can still potentially maintain the beneficial effects of estrogen in other tissues, such as bone and cardiovascular system. Tamoxifen, the prototypical drug of this class has been used extensively for the past 30 years to treat and prevent breast cancer. The target of drug action, ERs alpha and beta, are the two receptors which are responsible for the first step in estrogen and SERM action. The SERM binds to the ERs and confers a unique conformation to the complex. In a target site which expresses antiestrogenic actions, the conformation of the ER is distinctly different from estrogen bound ER. The complex recruits protein partners called corepressors to prevent the transcription of estrogen responsive genes. In contrast, at a predominantly estrogenic site coactivators for estrogen action are recruited. Unfortunately at an antiestrogenic site such as breast cancer, long term SERM therapy causes the development of acquired resistance. The breast and endometrial tumor cells selectively become SERM stimulated. Overexpression of receptor tyro sine kinases, HER-2, EGRF and IGRF and the signaling cascades following their activation are frequently involved in SERM resistant breast cancers. The aberrantly activated PI3K/AKT and MAPK pathways and their cross talk with the genomic components of the ER action are implicated in SERM resistance. Other down stream factors of HER-2 and EGRF signaling, such as PI3K/AKT, MAPK or mTOR pathways has also been found to be involved in resistance mechanisms. Blocking the actions of HER-2 and EGRF represent a rational strategy for treating SERM resistant phenotypes and may in fact restore the sensitivity to the SERMs. Another approach exploits the discovery that low dose estrogen will induce apoptosis in the SERM resistant breast cancers. Numerous clinical studies are addressing these issues.
AB - The majority of breast cancers are estrogen receptor (ER) positive and depend on estrogen for growth. Therefore, blocking estrogen mediated actions remains the strategy of choice for the treatment and prevention of breast cancer. The selective estrogen receptor modulators (SERMs) are molecules that block estrogen action in breast cancer but can still potentially maintain the beneficial effects of estrogen in other tissues, such as bone and cardiovascular system. Tamoxifen, the prototypical drug of this class has been used extensively for the past 30 years to treat and prevent breast cancer. The target of drug action, ERs alpha and beta, are the two receptors which are responsible for the first step in estrogen and SERM action. The SERM binds to the ERs and confers a unique conformation to the complex. In a target site which expresses antiestrogenic actions, the conformation of the ER is distinctly different from estrogen bound ER. The complex recruits protein partners called corepressors to prevent the transcription of estrogen responsive genes. In contrast, at a predominantly estrogenic site coactivators for estrogen action are recruited. Unfortunately at an antiestrogenic site such as breast cancer, long term SERM therapy causes the development of acquired resistance. The breast and endometrial tumor cells selectively become SERM stimulated. Overexpression of receptor tyro sine kinases, HER-2, EGRF and IGRF and the signaling cascades following their activation are frequently involved in SERM resistant breast cancers. The aberrantly activated PI3K/AKT and MAPK pathways and their cross talk with the genomic components of the ER action are implicated in SERM resistance. Other down stream factors of HER-2 and EGRF signaling, such as PI3K/AKT, MAPK or mTOR pathways has also been found to be involved in resistance mechanisms. Blocking the actions of HER-2 and EGRF represent a rational strategy for treating SERM resistant phenotypes and may in fact restore the sensitivity to the SERMs. Another approach exploits the discovery that low dose estrogen will induce apoptosis in the SERM resistant breast cancers. Numerous clinical studies are addressing these issues.
UR - http://www.scopus.com/inward/record.url?scp=49649104084&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=49649104084&partnerID=8YFLogxK
U2 - 10.1007/978-0-387-78818-0_13
DO - 10.1007/978-0-387-78818-0_13
M3 - Chapter
C2 - 18637493
AN - SCOPUS:49649104084
SN - 9780387788173
T3 - Advances in Experimental Medicine and Biology
SP - 206
EP - 219
BT - Innovative Endocrinology of Cancer
A2 - Berstein, Lev
A2 - Santen, Richard
ER -