Selective detection of 3-deoxymannooctulosonic acid in intact lipopolysaccharides by spin-echo 13C NMR

S. M. Strain, I. M. Armitage

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The 3-deoxy-D-mannooctulosonic acid (KDO) region of lipopolysaccharides (LPS) from the heptoseless mutant Salmonella minnesota R595 and inner core and heptoseless mutants derived from Escherichia coli K12 was studied by 13C NMR spectroscopy. A spin-echo spectral editing technique was employed for the selective detection of the quaternary anomeric carbon of ketosidically linked KDO. Only two quaternary carbon resonances attributable to KDO were detected in the anomeric carbon spectral region of each LPS from heptoseless mutants E. coli D31m4 (99.7 and 100.8 ppm) and S. minnesota R595 (100.0 and 100.9 ppm). Integrated signal intensities from fully relaxed normal 13C spectra showed that equivalent molar quantities of KDO and glucosamine (i.e. 2 mol of each) were present in each of these samples. Similarly, only two KDO anomeric carbon resonances were detected in the LPS from the inner core mutants E. coli D21f1 (100.8 and 101.2 ppm) and E. coli D21e7 (100.8 and 101.2 ppm). These data confirm the presence of a KDO disaccharide structure rather than a trisaccharide as determined by others using thiobarbituric acid-based assays. The LPS of E. coli D21 (complete inner core oligosaccharide) exhibited four quaternary anomeric carbon resonances (99.4, 100.7, 101.8, and 102.7 ppm). The unequal intensities of these resonances, however, demonstrated that significant heterogeneity exists with respect to KDO substitution in this LPS. A third KDO moiety present in substoichiometric amounts could be consistent with this observation. However, this possibility could not be distinguished from other modes of substitutional heterogeneity involving only 2 KDO residues.

Original languageEnglish (US)
Pages (from-to)12974-12977
Number of pages4
JournalJournal of Biological Chemistry
Volume260
Issue number24
StatePublished - 1985

Fingerprint

Dive into the research topics of 'Selective detection of 3-deoxymannooctulosonic acid in intact lipopolysaccharides by spin-echo <sup>13</sup>C NMR'. Together they form a unique fingerprint.

Cite this