Abstract
This paper presents a novel patient-specific algorithm for prediction of seizures in epileptic patients with low hardware complexity and low power consumption. In the proposed approach, we first compute the spectrogram of the input fragmented EEG signals from a few electrodes. Each fragmented data clip is ten minutes in duration. Band powers, relative spectral powers and ratios of spectral powers are extracted as features. The features are then subjected to electrode selection and feature selection using classification and regression tree. The baseline experiment uses all features from selected electrodes and these features are then subjected to a radial basis function kernel support vector machine (RBF-SVM) classifier. The proposed method further selects a small number features from the selected electrodes and train a polynomial support vector machine (SVM) classifier with degree of 2 on these features. Prediction performances are compared between the baseline experiment and the proposed method. The algorithm is tested using intra-cranial EEG (iEEG) from the American Epilepsy Society Seizure Prediction Challenge database. The baseline experiment using a large number of features and RBF-SVM achieves a 100% sensitivity and an average AUC of 0.9985, while the proposed algorithm using only a small number of features and polynomial SVM with degree of 2 can achieve a sensitivity of 100.0%, an average area under curve (AUC) of 0.9795. For both experiments, only 10% of the available training data are used for training.
Original language | English (US) |
---|---|
Title of host publication | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 5748-5751 |
Number of pages | 4 |
ISBN (Electronic) | 9781424492718 |
DOIs | |
State | Published - Nov 4 2015 |
Event | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy Duration: Aug 25 2015 → Aug 29 2015 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2015-November |
ISSN (Print) | 1557-170X |
Other
Other | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 8/25/15 → 8/29/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.