Sediment nitrification and denitrification in a Lake Superior estuary

Brent J. Bellinger, Terri M. Jicha, La Rae P. Lehto, Lindsey R. Seifert-Monson, David W. Bolgrien, Matthew A. Starry, Theodore R. Angradi, Mark S. Pearson, Colleen Elonen, Brian H Hill

    Research output: Contribution to journalArticlepeer-review

    19 Scopus citations

    Abstract

    Inorganic nitrogen (N) transformations and removal in aquatic sediments are microbially mediated, and rates influence N-transport. In this study we related physicochemical properties of a large Great Lakes embayment, the St. Louis River Estuary (SLRE) of western Lake Superior, to sediment N-transformation rates. We tested for associations among rates and N-inputs, vegetation biomass, and temperature. We measured rates of nitrification (NIT), unamended base denitrification (DeNIT), and potential denitrification [denitrifying enzyme activity (DEA)] in 2011 and 2012 across spatial and depth zones. In vegetated habitats, NIT and DeNIT rates were highest in deep (ca. 2m) water (249 and 2111mgNm-2d-1, respectively) and in the upper and lower reaches of the SLRE (>126 and 274mgNm-2d-1, respectively). Rates of DEA were similar among zones. In 2012, NIT, DeNIT, and DEA rates were highest in July, May, and June, respectively. System-wide, we observed highest NIT (223 and 287mgNm-2d-1) and DeNIT (77 and 64mgNm-2d-1) rates in the harbor and from deep water, respectively. Amendment with NO3- enhanced DeNIT rates more than carbon amendment; however, DeNIT and NIT rates were inversely related, suggesting the two processes are decoupled in sediments. Average proportion of N2O released during DEA (23-54%) was greater than from DeNIT (0-41%). Nitrogen cycling rates were spatially and temporally variable, but we modeled how alterations to water depth and N-inputs may impact DeNIT rates. A large flood occurred in 2012 which temporarily altered water chemistry and sediment nitrogen cycling.

    Original languageEnglish (US)
    Pages (from-to)392-403
    Number of pages12
    JournalJournal of Great Lakes Research
    Volume40
    Issue number2
    DOIs
    StatePublished - Jun 2014

    Bibliographical note

    Copyright:
    Copyright 2014 Elsevier B.V., All rights reserved.

    Keywords

    • Denitrification
    • Laurentian Great Lakes
    • Nitrification
    • Nitrous oxide
    • St. Louis River Estuary

    Fingerprint Dive into the research topics of 'Sediment nitrification and denitrification in a Lake Superior estuary'. Together they form a unique fingerprint.

    Cite this