Abstract
1 We present a construction for exact-repair regenerating codes with an information-theoretic secrecy guarantee against an eavesdropper with access to the content of (up to) ℓ nodes. The proposed construction works for the entire range of per-node storage and repair bandwidth for any distributed storage system with parameters (n, k = d, d, ℓ), aiming to maximize the size of the file that can be securely stored in the system. We provide an upper bound for the optimum trade-off for secure exact-repair regenerating codes.
Original language | English (US) |
---|---|
Title of host publication | 2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 211-215 |
Number of pages | 5 |
ISBN (Electronic) | 9781538692912 |
DOIs | |
State | Published - Jul 2019 |
Event | 2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France Duration: Jul 7 2019 → Jul 12 2019 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
Volume | 2019-July |
ISSN (Print) | 2157-8095 |
Conference
Conference | 2019 IEEE International Symposium on Information Theory, ISIT 2019 |
---|---|
Country/Territory | France |
City | Paris |
Period | 7/7/19 → 7/12/19 |
Bibliographical note
Funding Information:1This work is supported in part by the National Science Foundation under Grant CCF-1617884.
Publisher Copyright:
© 2019 IEEE.