TY - JOUR
T1 - Secretion of glycosylated pro-B-type natriuretic peptide from normal cardiomyocytes
AU - Tonne, Jason M.
AU - Campbell, Jarryd M.
AU - Cataliotti, Alessandro
AU - Ohmine, Seiga
AU - Thatava, Tayaramma
AU - Sakuma, Toshie
AU - Macheret, Fima
AU - Huntley, Brenda K.
AU - Burnett, John C.
AU - Ikeda, Yasuhiro
PY - 2011/6
Y1 - 2011/6
N2 - BACKGROUND: B-type natriuretic peptide (BNP), a key cardiac hormone in cardiorenal homeostasis, is produced as a 108 amino acid prohormone, proBNP1-108, which is converted to a biologically active peptide BNP1-32 and an inactive N-terminal (NT)-proBNP1-76. The widely accepted model is that the normal heart releases a proteolytically processed BNP1-32 and NTproBNP, whereas the diseased heart secretes high amounts of unprocessed/glycosylated proBNP1-108 or inappropriately processed BNPs. In contrast, circulating proBNP1-108 has recently been identified in healthy individuals, indicating that the normal heart also secretes unprocessed proBNP1-108. However, the mechanism of proBNP1-108 secretion from the normal heart remains elusive. Our goal was to determine the molecular mechanisms underlying proBNP1-108 intracellular trafficking and secretion from the normal heart. METHODS: We expressed preproBNP in cardiomyocytes, and determined the subcellular localization and dominant intracellular and extracellular forms of BNP. RESULTS: Intracellular immunoreactive BNPs were first accumulated in the Golgi apparatus, and then distributed throughout the cytoplasm as secretory vesicles. The predominant intracellular form of BNP was nonglycosylated proBNP1-108, rather than BNP1-32. Glycosylated proBNP1-108, but not non-glycosylated proBNP1-108, was detected as the major extracellular form in the culture supernatants of preproBNP-expressing cell lines and primary human cardiomyocytes. Ablation of O-glycosylation of proBNP1-108 at T71 residue, near the convertase recognition site, reduced the extracellular proBNP1-108 and increased extracellular BNP1-32. CONCLUSIONS: Intracellular proBNP trafficking occurs through a conventional Golgi-endoplasmic reticulum pathway. Glycosylation of proBNP1-108 controls the stability and processing of extracellular proBNP1-108. Our data establish a new BNP secretion model in which the normal cardiac cells secrete glycosylated proBNP1-108.
AB - BACKGROUND: B-type natriuretic peptide (BNP), a key cardiac hormone in cardiorenal homeostasis, is produced as a 108 amino acid prohormone, proBNP1-108, which is converted to a biologically active peptide BNP1-32 and an inactive N-terminal (NT)-proBNP1-76. The widely accepted model is that the normal heart releases a proteolytically processed BNP1-32 and NTproBNP, whereas the diseased heart secretes high amounts of unprocessed/glycosylated proBNP1-108 or inappropriately processed BNPs. In contrast, circulating proBNP1-108 has recently been identified in healthy individuals, indicating that the normal heart also secretes unprocessed proBNP1-108. However, the mechanism of proBNP1-108 secretion from the normal heart remains elusive. Our goal was to determine the molecular mechanisms underlying proBNP1-108 intracellular trafficking and secretion from the normal heart. METHODS: We expressed preproBNP in cardiomyocytes, and determined the subcellular localization and dominant intracellular and extracellular forms of BNP. RESULTS: Intracellular immunoreactive BNPs were first accumulated in the Golgi apparatus, and then distributed throughout the cytoplasm as secretory vesicles. The predominant intracellular form of BNP was nonglycosylated proBNP1-108, rather than BNP1-32. Glycosylated proBNP1-108, but not non-glycosylated proBNP1-108, was detected as the major extracellular form in the culture supernatants of preproBNP-expressing cell lines and primary human cardiomyocytes. Ablation of O-glycosylation of proBNP1-108 at T71 residue, near the convertase recognition site, reduced the extracellular proBNP1-108 and increased extracellular BNP1-32. CONCLUSIONS: Intracellular proBNP trafficking occurs through a conventional Golgi-endoplasmic reticulum pathway. Glycosylation of proBNP1-108 controls the stability and processing of extracellular proBNP1-108. Our data establish a new BNP secretion model in which the normal cardiac cells secrete glycosylated proBNP1-108.
UR - http://www.scopus.com/inward/record.url?scp=79957744637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957744637&partnerID=8YFLogxK
U2 - 10.1373/clinchem.2010.157438
DO - 10.1373/clinchem.2010.157438
M3 - Article
C2 - 21482747
AN - SCOPUS:79957744637
SN - 0009-9147
VL - 57
SP - 864
EP - 873
JO - Clinical chemistry
JF - Clinical chemistry
IS - 6
ER -