Abstract
Multiconfigurational second-order perturbation theory based on either a complete active space reference wave function (CASSCF/CASPT2) or a restricted active space reference wave function (RASSCF/RASPT2) has been applied to compute one-electron ionization potentials and vertical electronic energy differences of oligomers of length n formed from ethylene (n = 1-10), acetylene (n = 1-5), and phenylene (n = 1-3) subunits. The RASSCF/RASPT2 approach offers an accuracy similar to CASSCF/CASPT2 at significantly reduced computational expense (both methods show good agreement with experimental data where available). It is shown that RASPT2 extends the range of CASPT2-like approaches by permitting the use of larger active spaces.
Original language | English (US) |
---|---|
Pages (from-to) | 10964-10972 |
Number of pages | 9 |
Journal | Physical Chemistry Chemical Physics |
Volume | 11 |
Issue number | 46 |
DOIs | |
State | Published - 2009 |