Scaled gradients on Grassmann manifolds for matrix completion

Thanh T. Ngo, Yousef Saad

Research output: Chapter in Book/Report/Conference proceedingConference contribution

57 Scopus citations

Abstract

This paper describes gradient methods based on a scaled metric on the Grassmann manifold for low-rank matrix completion. The proposed methods significantly improve canonical gradient methods, especially on ill-conditioned matrices, while maintaining established global convegence and exact recovery guarantees. A connection between a form of subspace iteration for matrix completion and the scaled gradient descent procedure is also established. The proposed conjugate gradient method based on the scaled gradient outperforms several existing algorithms for matrix completion and is competitive with recently proposed methods.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages1412-1420
Number of pages9
StatePublished - Dec 1 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume2
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

Fingerprint

Dive into the research topics of 'Scaled gradients on Grassmann manifolds for matrix completion'. Together they form a unique fingerprint.

Cite this