TY - JOUR
T1 - Saturated proportional derivative control of flexible-joint manipulators
AU - Caverly, Ryan James
AU - Zlotnik, David Evan
AU - Bridgeman, Leila Jasmine
AU - Forbes, James Richard
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2014/12
Y1 - 2014/12
N2 - In this paper, the control of flexible-joint robotic manipulators while avoiding actuator saturation is investigated. Several proportional derivative controllers are developed, all of which disallow actuator saturation by guaranteeing that the applied torque is less than a specified maximum value. In particular, a Gibbs parameterization of the joint angles is included in the control laws, which allows for an increased control torque as compared to an Euler angle parameterization. An equilibrium point of the closed-loop system is proven to be asymptotically stable using the Lyapunov stability analysis. Moreover, the proposed control laws do not require any knowledge of the manipulators mass, stiffness, or dissipation properties, and as such, are robust to modelling errors. The proposed controllers are tested on a single-link flexible-joint manipulator experimentally and on a two-link flexible-joint manipulator in simulation, and are compared to the performance of controllers found in the literature.
AB - In this paper, the control of flexible-joint robotic manipulators while avoiding actuator saturation is investigated. Several proportional derivative controllers are developed, all of which disallow actuator saturation by guaranteeing that the applied torque is less than a specified maximum value. In particular, a Gibbs parameterization of the joint angles is included in the control laws, which allows for an increased control torque as compared to an Euler angle parameterization. An equilibrium point of the closed-loop system is proven to be asymptotically stable using the Lyapunov stability analysis. Moreover, the proposed control laws do not require any knowledge of the manipulators mass, stiffness, or dissipation properties, and as such, are robust to modelling errors. The proposed controllers are tested on a single-link flexible-joint manipulator experimentally and on a two-link flexible-joint manipulator in simulation, and are compared to the performance of controllers found in the literature.
KW - Actuator saturation
KW - Flexible-joint manipulator
KW - Proportional-derivative control
KW - Saturation avoidance
UR - http://www.scopus.com/inward/record.url?scp=84903981993&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903981993&partnerID=8YFLogxK
U2 - 10.1016/j.rcim.2014.06.001
DO - 10.1016/j.rcim.2014.06.001
M3 - Article
AN - SCOPUS:84903981993
SN - 0736-5845
VL - 30
SP - 658
EP - 666
JO - Computer Integrated Manufacturing Systems
JF - Computer Integrated Manufacturing Systems
IS - 6
ER -