TY - JOUR
T1 - Salmonella‐based therapy targeting indoleamine 2,3‐dioxygenase restructures the immune contexture to improve checkpoint blockade efficacy
AU - Ebelt, Nancy D.
AU - Zuniga, Edith
AU - Marzagalli, Monica
AU - Zamloot, Vic
AU - Blazar, Bruce R.
AU - Salgia, Ravi
AU - Manuel, Edwin R.
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020
Y1 - 2020
N2 - Therapeutic options for non‐small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patients. In order to better predict patients that will respond to ICB treatment, biomarkers such as tumor‐associated CD8+ T cell frequency, tumor checkpoint protein status and mutational burden have been utilized, however, with mixed success. In this study, we hypothesized that significantly altering the suppressive tumor immune landscape in NSCLC could potentially improve ICB efficacy. Using sub‐therapeutic doses of our Salmonella typhimurium‐based therapy targeting the suppressive molecule indoleamine 2,3‐dioxygenase (shIDO‐ST) in tumor-bearing mice, we observed dramatic changes in immune subset phenotypes that included increases in antigen presentation markers, decreased regulatory T cell frequency and overall reduced checkpoint protein expression. Combination shIDO‐ST treatment with anti‐PD‐1/CTLA‐4 antibodies enhanced tumor growth control, compared to either treatment alone, which was associated with significant intratumoral infiltration by CD8+ and CD4+ T cells. Ultimately, we show that increases in antigen presentation markers and infiltration by T cells is correlated with significantly increased survival in NSCLC patients. These results suggest that the success of ICB therapy may be more accurately predicted by taking into account multiple factors such as potential for antigen presentation and immune subset repertoire in addition to markers already being considered. Alternatively, combination treatment with agents such as shIDO‐ST could be used to create a more conducive tumor microenvironment for improving responses to ICB.
AB - Therapeutic options for non‐small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patients. In order to better predict patients that will respond to ICB treatment, biomarkers such as tumor‐associated CD8+ T cell frequency, tumor checkpoint protein status and mutational burden have been utilized, however, with mixed success. In this study, we hypothesized that significantly altering the suppressive tumor immune landscape in NSCLC could potentially improve ICB efficacy. Using sub‐therapeutic doses of our Salmonella typhimurium‐based therapy targeting the suppressive molecule indoleamine 2,3‐dioxygenase (shIDO‐ST) in tumor-bearing mice, we observed dramatic changes in immune subset phenotypes that included increases in antigen presentation markers, decreased regulatory T cell frequency and overall reduced checkpoint protein expression. Combination shIDO‐ST treatment with anti‐PD‐1/CTLA‐4 antibodies enhanced tumor growth control, compared to either treatment alone, which was associated with significant intratumoral infiltration by CD8+ and CD4+ T cells. Ultimately, we show that increases in antigen presentation markers and infiltration by T cells is correlated with significantly increased survival in NSCLC patients. These results suggest that the success of ICB therapy may be more accurately predicted by taking into account multiple factors such as potential for antigen presentation and immune subset repertoire in addition to markers already being considered. Alternatively, combination treatment with agents such as shIDO‐ST could be used to create a more conducive tumor microenvironment for improving responses to ICB.
KW - Anti‐CTLA4
KW - Anti‐PD‐1
KW - Immune checkpoint blockade
KW - Indoleamine 2,3‐dioxygenase
KW - Non‐small cell lung cancer
KW - Salmonella typhimurium
KW - Small‐hairpin RNA
UR - http://www.scopus.com/inward/record.url?scp=85097924850&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097924850&partnerID=8YFLogxK
U2 - 10.3390/biomedicines8120617
DO - 10.3390/biomedicines8120617
M3 - Article
C2 - 33339195
AN - SCOPUS:85097924850
SN - 2227-9059
VL - 8
SP - 1
EP - 20
JO - Biomedicines
JF - Biomedicines
IS - 12
M1 - 617
ER -