Rules warp feature encoding in decision-making circuits

R. Becket Ebitz, Jiaxin Cindy Tu, Benjamin Y. Hayden

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


We have the capacity to follow arbitrary stimulus-response rules, meaning simple policies that guide our behavior. Rule identity is broadly encoded across decision-making circuits, but there are less data on how rules shape the computations that lead to choices. One idea is that rules could simplify these computations. When we follow a rule, there is no need to encode or compute information that is irrelevant to the current rule, which could reduce the metabolic or energetic demands of decision-making. However, it is not clear if the brain can actually take advantage of this computational simplicity. To test this idea, we recorded from neurons in 3 regions linked to decision-making, the orbitofrontal cortex (OFC), ventral striatum (VS), and dorsal striatum (DS), while macaques performed a rule-based decision-making task. Rule-based decisions were identified via modeling rules as the latent causes of decisions. This left us with a set of physically identical choices that maximized reward and information, but could not be explained by simple stimulus-response rules. Contrasting rule-based choices with these residual choices revealed that following rules (1) decreased the energetic cost of decision-making; and (2) expanded rule-relevant coding dimensions and compressed rule-irrelevant ones. Together, these results suggest that we use rules, in part, because they reduce the costs of decision-making through a distributed representational warping in decision-making circuits.

Original languageEnglish (US)
Article numbere3000951
JournalPLoS biology
Issue number11
StatePublished - Nov 30 2020

Bibliographical note

Publisher Copyright:
© 2020 Ebitz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't


Dive into the research topics of 'Rules warp feature encoding in decision-making circuits'. Together they form a unique fingerprint.

Cite this