TY - JOUR
T1 - Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma
AU - Francescone, Ralph A.
AU - Scully, Steve
AU - Faibish, Michael
AU - Taylor, Sherry L.
AU - Oh, Dennis
AU - Moral, Luis
AU - Yan, Wei
AU - Bentley, Brooke
AU - Shao, Rong
PY - 2011/4/29
Y1 - 2011/4/29
N2 - Glioblastoma is one of the most fatal cancers, characterized by a strong vascularized phenotype. YKL-40, a secreted glycoprotein, is overexpressed in patients with glioblastomas and has potential as a novel tumor biomarker. The molecular mechanisms of YKL-40 in glioblastoma development, however, are poorly understood. Here, we aimed to elucidate the role YKL-40 plays in the regulation of VEGF expression, tumor angiogenesis, and radioresistance. YKL-40 up-regulated VEGF expression in glioblastoma cell line U87, and both YKL-40 and VEGF synergistically promote endothelial cell angiogenesis. Interestingly, long term inhibition of VEGF up-regulated YKL-40. YKL-40 induced coordination of membrane receptor syndecan-1 and integrin αvβ5, and triggered a signaling cascade through FAK397 to ERK-1 and ERK-2, leading to elevated VEGF and enhanced angiogenesis. In addition, γ-irradiation of U87 cells increased YKL-40 expression that protects cell death through AKT activation and also enhances endothelial cell angiogenesis. Blockade of YKL-40 activity or expression decreased tumor growth, angiogenesis, and metastasis in xenografted animals. Immunohistochemical analysis of human glioblastomas revealed a correlation between YKL-40, VEGF, and patient survival. These findings have shed light on the mechanisms by which YKL-40 promotes tumor angiogenesis and malignancy, and thus provide a therapeutic target for tumor treatment.
AB - Glioblastoma is one of the most fatal cancers, characterized by a strong vascularized phenotype. YKL-40, a secreted glycoprotein, is overexpressed in patients with glioblastomas and has potential as a novel tumor biomarker. The molecular mechanisms of YKL-40 in glioblastoma development, however, are poorly understood. Here, we aimed to elucidate the role YKL-40 plays in the regulation of VEGF expression, tumor angiogenesis, and radioresistance. YKL-40 up-regulated VEGF expression in glioblastoma cell line U87, and both YKL-40 and VEGF synergistically promote endothelial cell angiogenesis. Interestingly, long term inhibition of VEGF up-regulated YKL-40. YKL-40 induced coordination of membrane receptor syndecan-1 and integrin αvβ5, and triggered a signaling cascade through FAK397 to ERK-1 and ERK-2, leading to elevated VEGF and enhanced angiogenesis. In addition, γ-irradiation of U87 cells increased YKL-40 expression that protects cell death through AKT activation and also enhances endothelial cell angiogenesis. Blockade of YKL-40 activity or expression decreased tumor growth, angiogenesis, and metastasis in xenografted animals. Immunohistochemical analysis of human glioblastomas revealed a correlation between YKL-40, VEGF, and patient survival. These findings have shed light on the mechanisms by which YKL-40 promotes tumor angiogenesis and malignancy, and thus provide a therapeutic target for tumor treatment.
UR - http://www.scopus.com/inward/record.url?scp=79955416050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955416050&partnerID=8YFLogxK
U2 - 10.1074/jbc.M110.212514
DO - 10.1074/jbc.M110.212514
M3 - Article
C2 - 21385870
AN - SCOPUS:79955416050
SN - 0021-9258
VL - 286
SP - 15332
EP - 15343
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 17
ER -