TY - JOUR
T1 - Role of the Diamagnetic Zinc(II) Ion in Determining the Electronic Structure of Lanthanide Single-Ion Magnets
AU - Upadhyay, Apoorva
AU - Das, Chinmoy
AU - Vaidya, Shefali
AU - Singh, Saurabh Kumar
AU - Gupta, Tulika
AU - Mondol, Ranajit
AU - Langley, Stuart K.
AU - Murray, Keith S.
AU - Rajaraman, Gopalan
AU - Shanmugam, Maheswaran
N1 - Publisher Copyright:
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/4/6
Y1 - 2017/4/6
N2 - Four complexes containing DyIII and PrIII ions and their LnIII–ZnII analogs have been synthesized in order to study the influence that a diamagnetic ZnII ion has on the electronic structure and hence, the magnetic properties of the DyIII and PrIII single ions. Single-crystal X-ray diffraction revealed the molecular structures as [DyIII(HL)2(NO3)3] (1), [PrIII(HL)2(NO3)3] (2), [ZnIIDyIII(L)2(CH3CO2)(NO3)2] (3) and [ZnII2PrIII(L)2(CH3CO2)4(NO3)] (4) (where HL=2-methoxy-6-[(E)-phenyliminomethyl]phenol). The dc and ac magnetic data were collected for all four complexes. Compounds 1 and 3 display frequency dependent out-of-phase susceptibility signals (χM“), which is a characteristic signature for a single-molecule magnet (SMM). Although 1 and 3 are chemically similar, a fivefold increase in the anisotropic barrier (Ueff) is observed experimentally for 3 (83 cm−1), compared to 1 (16 cm−1). To rationalize the larger anisotropic barrier (1 vs. 3), detailed ab initio calculations were performed. Although the ground state Kramer's doublet in both 1 and 3 are axial in nature (gzz=19.443 for 1 and 18.82 for 3), a significant difference in the energy gap (Ueff) between the ground and first excited Kramer's doublet is calculated. This energy gap is governed by the electrostatic repulsion between the DyIII ion and the additional charge density found for the phenoxo bridging ligand in 3. This extra charge density was found to be a consequence of the presence of the diamagnetic ZnII ion present in the complex. To explore the influence of diamagnetic ions on the magnetic properties further, previously reported and structurally related Zn–DyIII complexes were analyzed. These structurally analogous complexes unambiguously suggest that the electrostatic repulsion is found to be maximal when the Zn-O-Dy-O dihedral angle is small, which is an ideal condition to maximize the anisotropic barrier in DyIII complexes.
AB - Four complexes containing DyIII and PrIII ions and their LnIII–ZnII analogs have been synthesized in order to study the influence that a diamagnetic ZnII ion has on the electronic structure and hence, the magnetic properties of the DyIII and PrIII single ions. Single-crystal X-ray diffraction revealed the molecular structures as [DyIII(HL)2(NO3)3] (1), [PrIII(HL)2(NO3)3] (2), [ZnIIDyIII(L)2(CH3CO2)(NO3)2] (3) and [ZnII2PrIII(L)2(CH3CO2)4(NO3)] (4) (where HL=2-methoxy-6-[(E)-phenyliminomethyl]phenol). The dc and ac magnetic data were collected for all four complexes. Compounds 1 and 3 display frequency dependent out-of-phase susceptibility signals (χM“), which is a characteristic signature for a single-molecule magnet (SMM). Although 1 and 3 are chemically similar, a fivefold increase in the anisotropic barrier (Ueff) is observed experimentally for 3 (83 cm−1), compared to 1 (16 cm−1). To rationalize the larger anisotropic barrier (1 vs. 3), detailed ab initio calculations were performed. Although the ground state Kramer's doublet in both 1 and 3 are axial in nature (gzz=19.443 for 1 and 18.82 for 3), a significant difference in the energy gap (Ueff) between the ground and first excited Kramer's doublet is calculated. This energy gap is governed by the electrostatic repulsion between the DyIII ion and the additional charge density found for the phenoxo bridging ligand in 3. This extra charge density was found to be a consequence of the presence of the diamagnetic ZnII ion present in the complex. To explore the influence of diamagnetic ions on the magnetic properties further, previously reported and structurally related Zn–DyIII complexes were analyzed. These structurally analogous complexes unambiguously suggest that the electrostatic repulsion is found to be maximal when the Zn-O-Dy-O dihedral angle is small, which is an ideal condition to maximize the anisotropic barrier in DyIII complexes.
KW - ab initio calculations
KW - clusters
KW - dysprosium
KW - magnetic properties
KW - praseodymium
KW - single-ion magnets
UR - http://www.scopus.com/inward/record.url?scp=85016205670&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016205670&partnerID=8YFLogxK
U2 - 10.1002/chem.201700399
DO - 10.1002/chem.201700399
M3 - Article
C2 - 28177539
AN - SCOPUS:85016205670
SN - 0947-6539
VL - 23
SP - 4903
EP - 4916
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 20
ER -