Role of intracellular stochasticity in biofilm growth. insights from population balance modeling

Che Chi Shu, Anushree Chatterjee, Wei Shou Hu, Doraiswami Ramkrishna

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


There is increasing recognition that stochasticity involved in gene regulatory processes may help cells enhance the signal or synchronize expression for a group of genes. Thus the validity of the traditional deterministic approach to modeling the foregoing processes cannot be without exception. In this study, we identify a frequently encountered situation, i.e., the biofilm, which has in the past been persistently investigated with intracellular deterministic models in the literature. We show in this paper circumstances in which use of the intracellular deterministic model appears distinctly inappropriate. In Enterococcus faecalis, the horizontal gene transfer of plasmid spreads drug resistance. The induction of conjugation in planktonic and biofilm circumstances is examined here with stochastic as well as deterministic models. The stochastic model is formulated with the Chemical Master Equation (CME) for planktonic cells and Reaction-Diffusion Master Equation (RDME) for biofilm. The results show that although the deterministic model works well for the perfectly-mixed planktonic circumstance, it fails to predict the averaged behavior in the biofilm, a behavior that has come to be known as stochastic focusing. A notable finding from this work is that the interception of antagonistic feedback loops to signaling, accentuates stochastic focusing. Moreover, interestingly, increasing particle number of a control variable could lead to an even larger deviation. Intracellular stochasticity plays an important role in biofilm and we surmise by implications from the model, that cell populations may use it to minimize the influence from environmental fluctuation. Copyright:

Original languageEnglish (US)
Article numbere79196
JournalPloS one
Issue number11
StatePublished - Nov 13 2013


Dive into the research topics of 'Role of intracellular stochasticity in biofilm growth. insights from population balance modeling'. Together they form a unique fingerprint.

Cite this