Abstract
Host-guest structures are used in most state-of-the-art organic light-emitting devices, with the host transporting charge and confining excitons on the guest. While the host often plays a critical role in achieving high efficiency and stability, predicting and understanding these effects is a persistent design challenge which slows the discovery of new active materials. Closely related host molecules, which differ only by several functional groups, often show drastically different degradation behavior. Here, we explore this observation for the archetypical carbazole hosts 4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) and 4,4′-bis(carbazole-9-yl)-2,2′-dimethylbiphenyl (CDBP). While devices based on these hosts show similar efficiencies, CDBP-based devices show a tenfold lower lifetime than CBP devices when paired with phosphorescent or fluorescent emitters. Using optically and electrically pumped degradation tests, mass spectrometry, compositional analysis, and low-temperature phosphorescence spectroscopy, the lifetimes of devices containing CDBP are shown to correlate with the formation of intermolecular triplet excimer states. These findings suggest that candidate host molecules should be screened for excimer formation as host excimers may aggravate device degradation and lower device stability.
Original language | English (US) |
---|---|
Article number | 063302 |
Journal | Applied Physics Letters |
Volume | 116 |
Issue number | 6 |
DOIs | |
State | Published - Feb 10 2020 |
Bibliographical note
Funding Information:This work was supported by DuPont Electronics and Imaging. J.S.B. acknowledges support from the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. 00074041. Mass spectrometry was performed at The University of Minnesota (UMN) Department of Chemistry Mass Spectrometry Laboratory (MSL), supported by the Office of the Vice President of Research, College of Science and Engineering, and the Department of Chemistry at UMN, as well as through NSF Grant No. CHE-1336940.
Publisher Copyright:
© 2019 Author(s).