Robust stabilizer design for linear time-varying internal model based output regulation and its application to an electrohydraulic system

Xingyong Song, Yu Wang, Zongxuan Sun

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


This paper focuses on the design of a low order robust stabilizer for the tracking/disturbance rejection problem based on the internal model principle in the time-varying setting and its application to the hydraulic pressure tracking with varying frequency. The problem of this kind known as output regulation generally consists of two major parts: internal model unit construction and stabilizer design. While the construction of the time-varying internal model unit is non-trivial by itself and a very recent research outcome enables its synthesis for a class of linear time-varying systems, the effective stabilization of the augmented system (internal model unit and plant) for practical applications remains a challenge. This is due to the need to stabilize the high order time-varying augmented system using a low order stabilizer in a robust fashion and with desirable transient performance. While directly applying the stabilization approaches for a general LTV system will result in a high order stabilizer, a new method is proposed in this paper that overcomes this bottleneck by taking advantage of the unique structure of the internal model based control system. Instead of using a dynamic stabilizer with high order, this approach uses a sequence of time-varying gains that are directly injected into the internal model unit. A critical issue addressed is how to avoid the non-convex optimization associated with the time-varying gain synthesis and then convert the stabilizer design into a series of Linear Matrix Inequalities (LMIs). The proposed control approach is then demonstrated on an electrohydraulic system.

Original languageEnglish (US)
Pages (from-to)1128-1134
Number of pages7
Issue number4
StatePublished - Apr 2014

Bibliographical note

Funding Information:
The material in this paper was partially presented at the 2012 American Control Conference (ACC 2012) ( Song, Wang, & Sun, 2012 ), June 27–29, 2012, Montréal, Canada. This paper was recommended for publication in revised form by Associate Editor Kyung-Soo Kim under the direction of Editor Toshiharu Sugie. More systematic derivation of the proposed control methodology, detailed dynamics modeling/controller design for an electro-hydraulic system, together with more comprehensive experimental results are presented in this paper. The work is supported in part by NSF under grant CMMI-1150957 .

Copyright 2014 Elsevier B.V., All rights reserved.


  • Internal model principle
  • LPV system stabilization
  • Time-varying output regulation
  • Time-varying repetitive control


Dive into the research topics of 'Robust stabilizer design for linear time-varying internal model based output regulation and its application to an electrohydraulic system'. Together they form a unique fingerprint.

Cite this