Abstract
Detecting an abrupt and persistent change in the underlying distribution of online data streams is an important problem in many applications. This paper proposes a new robust score-based algorithm called RSCUSUM, which can be applied to unnormalized models and addresses the issue of unknown post-change distributions. RSCUSUM replaces the Kullback-Leibler divergence with the Fisher divergence between pre- and post-change distributions for computational efficiency in unnormalized statistical models and introduces a notion of the “least favorable” distribution for robust change detection. The algorithm and its theoretical analysis are demonstrated through simulation studies.
Original language | English (US) |
---|---|
Pages (from-to) | 2314-2323 |
Number of pages | 10 |
Journal | Proceedings of Machine Learning Research |
Volume | 216 |
State | Published - 2023 |
Event | 39th Conference on Uncertainty in Artificial Intelligence, UAI 2023 - Pittsburgh, United States Duration: Jul 31 2023 → Aug 4 2023 |
Bibliographical note
Publisher Copyright:© UAI 2023. All rights reserved.