Abstract
Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel ℓ1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.
Original language | English (US) |
---|---|
Title of host publication | Conference Record of the 49th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015 |
Editors | Michael B. Matthews |
Publisher | IEEE Computer Society |
Pages | 1525-1529 |
Number of pages | 5 |
ISBN (Electronic) | 9781467385763 |
DOIs | |
State | Published - Feb 26 2016 |
Event | 49th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015 - Pacific Grove, United States Duration: Nov 8 2015 → Nov 11 2015 |
Publication series
Name | Conference Record - Asilomar Conference on Signals, Systems and Computers |
---|---|
Volume | 2016-February |
ISSN (Print) | 1058-6393 |
Other
Other | 49th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015 |
---|---|
Country/Territory | United States |
City | Pacific Grove |
Period | 11/8/15 → 11/11/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
Keywords
- IP path delay monitoring
- Kalman filter
- Robust estimation
- kriging
- sparsity