Abstract
This paper addresses the problem of observer-based stabilization of discrete-time linear systems in presence of parameter uncertainties and 2-bounded disturbances. We propose a new variant of the classical two-steps LMI approach. In the first step, we use a slack variable technique to solve the optimization problem resulting from the stabilization problem by a static state feedback. In the second step, a part of the slack variable obtained is incorporated in the H∞ observer-based stabilization problem, to calculate simultaneously the Lyapunov matrix and the observer-based controller gains. Numerical evaluation by Monte Carlo is presented to show the superiority of the proposed Modified Two-Steps Method (MTSM) from LMI feasibility point of view.
Original language | English (US) |
---|---|
Title of host publication | 2018 Annual American Control Conference, ACC 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4398-4402 |
Number of pages | 5 |
ISBN (Print) | 9781538654286 |
DOIs | |
State | Published - Aug 9 2018 |
Event | 2018 Annual American Control Conference, ACC 2018 - Milwauke, United States Duration: Jun 27 2018 → Jun 29 2018 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
Volume | 2018-June |
ISSN (Print) | 0743-1619 |
Other
Other | 2018 Annual American Control Conference, ACC 2018 |
---|---|
Country/Territory | United States |
City | Milwauke |
Period | 6/27/18 → 6/29/18 |
Bibliographical note
Publisher Copyright:© 2018 AACC.
Keywords
- Linear Matrix Inequalities (LMIs)
- Observer-based control
- criterion
- uncertain systems