Abstract
Robust PCA is a standard tool for learning a linear subspace in the presence of sparse corruption or rare outliers. What about robustly learning manifolds that are more realistic models for natural data, such as images? There have been several recent attempts to generalize robust PCA to manifold settings. In this paper, we propose ℓ1- and scaling-invariant ℓ1/ℓ2-robust autoencoders based on a surprisingly compact formulation built on the intuition that deep autoencoders perform manifold learning. We demonstrate on several standard image datasets that the proposed formulation significantly outperforms all previous methods in collectively removing sparse corruption, without clean images for training. Moreover, we also show that the learned manifold structures can be generalized to unseen data samples effectively.
Original language | English (US) |
---|---|
Title of host publication | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728163277 |
DOIs | |
State | Published - 2023 |
Event | 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece Duration: Jun 4 2023 → Jun 10 2023 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2023-June |
ISSN (Print) | 1520-6149 |
Conference
Conference | 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 |
---|---|
Country/Territory | Greece |
City | Rhodes Island |
Period | 6/4/23 → 6/10/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- Denoising
- Image Reconstruction
- Manifold Learning
- Robust Autoencoders
- Sparse Corruption