Robot finger stiffness control in the presence of mechanical noniinearities

R. Vossoughi, M. Donath

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Stiffness control provides a mechanism for controlling finger position or force, and facilitates stable behavior during the transition between unconstrained motion and sudden contact with the environment. The method proposed here provides uniformity of response upon finger contact for any contact stiffness, as long as no separation occurs. The stiffness control system of a finger joint in a robot hand was partitioned into linear and nonlinear subsystems. The controller design used pole placement techniques based on the linear subsystem while the mechanical noniinearities (i.e., load and velocity dependent nonlinear friction and nonlinear damping) in the drive were modeled separately. The parameters of the nonlinear model were experimentally identified off-line. These identified parameters were then used in a realtime estimator for compensation of the nonlinear effects while the system was under stiffness control. The technique was implemented successfully at 40 HZ on the actual finger under investigation. The results are a significant improvement on traditional techniques for nonlinear systems which result in large offsets or unstable behavior.

Original languageEnglish (US)
Pages (from-to)236-245
Number of pages10
JournalJournal of Dynamic Systems, Measurement and Control, Transactions of the ASME
Issue number3
StatePublished - Sep 1988


Dive into the research topics of 'Robot finger stiffness control in the presence of mechanical noniinearities'. Together they form a unique fingerprint.

Cite this