RNA targeting with CRISPR-Cas13

Omar O. Abudayyeh, Jonathan S. Gootenberg, Patrick Essletzbichler, Shuo Han, Julia Joung, Joseph J. Belanto, Vanessa Verdine, David B.T. Cox, Max J. Kellner, Aviv Regev, Eric S. Lander, Daniel F. Voytas, Alice Y. Ting, Feng Zhang

Research output: Contribution to journalArticlepeer-review

638 Scopus citations


RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference1-3 can efficiently knockdown RNAs, but it is prone to off-target effects4, and visualizing RNAs typically relies on the introduction of exogenous tags5. Here we demonstrate that the class 2 type VI6,7 RNA-guided RNA-targeting CRISPR-Cas effector Cas13a8 (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.

Original languageEnglish (US)
Pages (from-to)280-284
Number of pages5
Issue number7675
StatePublished - Oct 12 2017

Bibliographical note

Funding Information:
Acknowledgements We thank M. Alimova, D. Feldman, F. Chen, J. G. Doench, J. M. Engreitz, N. Habib, D. Tenen, A. Allen, R. Macrae, and R. Belliveau for discussions and support. O.A.A. is supported by a Paul and Daisy Soros Fellowship and a National Defense Science and Engineering Fellowship. J.S.G. is supported by a D.O.E. Computational Science Graduate Fellowship.

Funding Information:
A.R. is supported by the Howard Hughes Medical Institute. F.Z. is a New York Stem Cell Foundation-Robertson Investigator. F.Z. is supported by the National Institutes of Health through the National Institute of Mental Health (5DP1-MH100706 and 1R01-MH110049), the Howard Hughes Medical Institute, the New York Stem Cell, Simons, Paul G. Allen Family, and Vallee Foundations; and James and Patricia Poitras, Robert Metcalfe, and David Cheng.

Publisher Copyright:
©2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


Dive into the research topics of 'RNA targeting with CRISPR-Cas13'. Together they form a unique fingerprint.

Cite this