TY - JOUR
T1 - Rheological Weakening of Olivine + Orthopyroxene Aggregates Due to Phase Mixing
T2 - Effects of Orthopyroxene Volume Fraction
AU - Tasaka, Miki
AU - Zimmerman, Mark E.
AU - Kohlstedt, David L.
N1 - Publisher Copyright:
©2020. American Geophysical Union. All Rights Reserved.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - To understand the effects of secondary minerals on changes in the mechanical properties of upper mantle rocks due to phase mixing, we conducted high-strain torsion experiments on aggregates of iron-rich olivine + orthopyroxene (opx) with opx volume fractions of fopx = 0.15, 0.26, and 0.35. For samples with larger amounts of opx, fopx = 0.26 and 0.35, the value of the stress exponent decreases with increasing strain from n ≈ 3 for γ ≲ 5 to n ≈ 2 for 5 ≲ γ ≲ 25, indicating that the deformation mechanism changes as strain increases. In contrast, for samples with fopx = 0.15, the stress exponent is constant at n ≈ 3.3 for 1 ≲ γ ≲ 25, suggesting that no change in deformation mechanism occurs with increasing strain for samples with smaller amounts of opx. The microstructures of samples with larger amounts of opx provide insight into the change in deformation mechanism derived from the mechanical data. Elongated grains align subparallel to the shear direction for samples of all three compositions deformed to lower strains. However, strain weakening with grain size reduction and the formation of a thoroughly mixed, fine-grained texture only develops in samples with fopx = 0.26 and 0.35 deformed to higher strains of γ ≳ 16. These mechanical and associated microstructural properties imply that rheological weakening due to phase mixing only occurs in the samples with larger fopx, which is an important constraint for understanding strain localization in the upper mantle of Earth.
AB - To understand the effects of secondary minerals on changes in the mechanical properties of upper mantle rocks due to phase mixing, we conducted high-strain torsion experiments on aggregates of iron-rich olivine + orthopyroxene (opx) with opx volume fractions of fopx = 0.15, 0.26, and 0.35. For samples with larger amounts of opx, fopx = 0.26 and 0.35, the value of the stress exponent decreases with increasing strain from n ≈ 3 for γ ≲ 5 to n ≈ 2 for 5 ≲ γ ≲ 25, indicating that the deformation mechanism changes as strain increases. In contrast, for samples with fopx = 0.15, the stress exponent is constant at n ≈ 3.3 for 1 ≲ γ ≲ 25, suggesting that no change in deformation mechanism occurs with increasing strain for samples with smaller amounts of opx. The microstructures of samples with larger amounts of opx provide insight into the change in deformation mechanism derived from the mechanical data. Elongated grains align subparallel to the shear direction for samples of all three compositions deformed to lower strains. However, strain weakening with grain size reduction and the formation of a thoroughly mixed, fine-grained texture only develops in samples with fopx = 0.26 and 0.35 deformed to higher strains of γ ≳ 16. These mechanical and associated microstructural properties imply that rheological weakening due to phase mixing only occurs in the samples with larger fopx, which is an important constraint for understanding strain localization in the upper mantle of Earth.
KW - deformation
KW - olivine
KW - orthopyroxene
KW - phase mixing
KW - rheological weakening
UR - http://www.scopus.com/inward/record.url?scp=85091462328&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091462328&partnerID=8YFLogxK
U2 - 10.1029/2020JB019888
DO - 10.1029/2020JB019888
M3 - Article
AN - SCOPUS:85091462328
SN - 2169-9313
VL - 125
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 9
M1 - e2020JB019888
ER -