TY - JOUR
T1 - Rhamm-/- fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair
AU - Tolg, Cornelia
AU - Hamilton, Sara R.
AU - Nakrieko, Kerry Ann
AU - Kooshesh, Fatemeh
AU - Walton, Paul
AU - McCarthy, James B.
AU - Bissell, Mina J.
AU - Turley, Eva A.
PY - 2006/12/18
Y1 - 2006/12/18
N2 - Rhamm (receptor for hyaluronan-mediated motility) is an hyaluronan binding protein with limited expression in normal tissues and high expression in advanced cancers. To understand its physiological functions and identify the molecular mechanisms underlying these functions, we created mice with a genetic deletion of Rhamm. We show that Rhamm-/- fibroblasts fail to resurface scratch wounds >3 mm or invade hyaluronan-supplemented collagen gels in culture. We identify a requirement for Rhamm in the localization of CD44 to the cell surface, formation of CD44-ERK1,2 (extracellular-regulated kinase 1,2) complexes, and activation/subcellular targeting of ERK1,2 to the cell nucleus. We also show that cell surface Rhamm, restricted to the extracellular compartment by linking recombinant protein to beads, and expression of mutant active mitogen-activated kinase kinase 1 (Mek1) are sufficient to rescue aberrant signaling through CD44-ERK1,2 complexes in Rh-/- fibroblasts. ERK1,2 activation and fibroblast migration/differentiation is also defective during repair of Rh-/- excisional skin wounds and results in aberrant granulation tissue in vivo. These results identify Rhamm as an essential regulator of CD44-ERK1,2 fibroblast motogenic signaling required for wound repair.
AB - Rhamm (receptor for hyaluronan-mediated motility) is an hyaluronan binding protein with limited expression in normal tissues and high expression in advanced cancers. To understand its physiological functions and identify the molecular mechanisms underlying these functions, we created mice with a genetic deletion of Rhamm. We show that Rhamm-/- fibroblasts fail to resurface scratch wounds >3 mm or invade hyaluronan-supplemented collagen gels in culture. We identify a requirement for Rhamm in the localization of CD44 to the cell surface, formation of CD44-ERK1,2 (extracellular-regulated kinase 1,2) complexes, and activation/subcellular targeting of ERK1,2 to the cell nucleus. We also show that cell surface Rhamm, restricted to the extracellular compartment by linking recombinant protein to beads, and expression of mutant active mitogen-activated kinase kinase 1 (Mek1) are sufficient to rescue aberrant signaling through CD44-ERK1,2 complexes in Rh-/- fibroblasts. ERK1,2 activation and fibroblast migration/differentiation is also defective during repair of Rh-/- excisional skin wounds and results in aberrant granulation tissue in vivo. These results identify Rhamm as an essential regulator of CD44-ERK1,2 fibroblast motogenic signaling required for wound repair.
UR - http://www.scopus.com/inward/record.url?scp=33845701690&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845701690&partnerID=8YFLogxK
U2 - 10.1083/jcb.200511027
DO - 10.1083/jcb.200511027
M3 - Article
C2 - 17158951
AN - SCOPUS:33845701690
SN - 0021-9525
VL - 175
SP - 1017
EP - 1028
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 6
ER -