Reweighting to achieve elliptically contoured covariates in regression

Research output: Contribution to journalArticle

102 Scopus citations

Abstract

We investigate a method of constructing weights to induce elliptically contoured covariates in regression analyses. Much recent work in regression has identified various data analytic and model robustness advantages associated with such covariates. In particular, new estimation methods like SIR, SIRII, SAVE, and PHD have been built around the assumption of elliptically contoured covariates. Finite samples of regression covariates may deviate from this ideal in practice, and the method developed here, termed Voronoi weighting, can be used to induce elliptical symmetry in such samples. In a number of examples, we show that reweighting cases by the Voronoi method can substantially enhance various procedures. For covariates that deviate from elliptical symmetry, we show that Voronoi weighting, in conjunction with some trimming via the minimum volume ellipsoid method, can be effective.

Original languageEnglish (US)
Pages (from-to)592-599
Number of pages8
JournalJournal of the American Statistical Association
Volume89
Issue number426
DOIs
StatePublished - Jun 1994

Keywords

  • Monte Carlo sampling
  • SAVE
  • Sliced inverse regression
  • Voronoi tesselation

Fingerprint Dive into the research topics of 'Reweighting to achieve elliptically contoured covariates in regression'. Together they form a unique fingerprint.

Cite this