Reverse entropy power inequalities for s-concave densities

Peng Xu, James Melbourne, Mokshay Madiman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

We explore conditions under which a reverse Rényi entropy power inequality holds for random vectors with s-concave densities, and also discuss connections with Convex Geometry.

Original languageEnglish (US)
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2284-2288
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - Aug 10 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: Jul 10 2016Jul 15 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Other

Other2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period7/10/167/15/16

Bibliographical note

Funding Information:
This work was supported by the U.S. National Science Foundation through grants DMS-1409504 and CCF-1346564

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Rényi entropy
  • convex measure
  • convex order
  • entropy power
  • log-concave
  • majorization

Fingerprint

Dive into the research topics of 'Reverse entropy power inequalities for s-concave densities'. Together they form a unique fingerprint.

Cite this