Abstract
CD19-targeted chimeric antigen receptor (CAR) T-cells (CAR19s) show remarkable efficacy in the treatment of relapsed/refractory acute lymphocytic leukemia and Non-Hodgkin's lymphoma. However, the use of CAR T-cell therapy against CD19-negative hematological cancers and solid tumors has been challenging. We propose CD19-fusion proteins (CD19-FPs) to leverage the benefits of CAR19s while retargeting this validated cellular therapy to alternative tumor antigens. We demonstrate the ability of a fusion of CD19 extracellular domain (ECD) and a human epidermal growth factor receptor 2 (HER2) single-chain antibody fragment to retarget CAR19s to kill HER2+ CD19- tumor cells. To enhance the modularity of this technology, we engineered a more robust CD19 ECD via deep mutational scanning with yeast display and flow cytometric selections for improved protease resistance and anti-CD19 antibody binding. These enhanced CD19 ECDs significantly increase, and in some cases recover, fusion protein expression while maintaining target antigen affinity. Importantly, CD19-FPs retarget CAR19s to kill tumor cells expressing multiple distinct antigens, including HER2, CD20, EGFR, BCMA, and Clec12A as N- or C-terminal fusions and linked to both antibody fragments and fibronectin ligands. This study provides fundamental insights into CD19 sequence-function relationships and defines a flexible and modular platform to retarget CAR19s to any tumor antigen.
Original language | English (US) |
---|---|
Pages (from-to) | 3544-3558 |
Number of pages | 15 |
Journal | Molecular pharmaceutics |
Volume | 16 |
Issue number | 8 |
DOIs | |
State | Published - Aug 5 2019 |
Bibliographical note
Funding Information:The research study was funded by Aleta Biotherapeutics.
Publisher Copyright:
© 2019 American Chemical Society.
Keywords
- CD19
- chimeric antigen receptors
- deep mutational scanning
- protein fusion
- protein solubility
- yeast surface display