Abstract
The clinical presentation of binge eating disorder (BED) and data emerging from task-based functional neuroimaging research suggests that this disorder may be associated with alterations in reward processing. However, there is a dearth of research investigating the functional organization of brain networks that mediate reward in BED. To address this gap, 27 adults with BED and 21 weight-matched healthy controls (WMC) completed a multimodel assessment consisting of a resting functional magnetic resonance imaging scan, behavioral tasks measuring reward-based decision-making (i.e., delay discounting and reversal learning), and self-report assessing clinical symptoms. A seed-based approach was employed to examine the resting state functional connectivity (rsFC) of the striatum (nucleus accumbens [NAcc] and ventral and dorsal caudate), a collection of regions implicated in reward processing. Compared with WMC, the BED group exhibited lower rsFC of striatal seeds, with frontal regions mediating executive functioning (e.g., superior frontal gyrus [SFG]) and posterior, parietal, and temporal regions implicated in emotional processing. Lower NAcc-SFG rsFC was associated with more difficulties with reversal learning and binge eating frequency in the BED group. Results suggest that hypoconnectivity of striatal networks that integrate self-regulation and reward processing may promote the clinical phenomenology of BED. Interventions for BED may benefit from targeting these circuit-based disturbances.
Original language | English (US) |
---|---|
Pages (from-to) | 2494-2504 |
Number of pages | 11 |
Journal | Cerebral Cortex |
Volume | 31 |
Issue number | 5 |
DOIs | |
State | Published - Mar 31 2021 |
Bibliographical note
Publisher Copyright:© 2021 The Author(s).
Keywords
- binge eating
- caudate
- nucleus accumbens
- resting state functional connectivity
- reward