Abstract
Background: Conducted electrical weapons (CEWs) are used by law enforcement to subdue combative subjects. Occasionally, subjects will die after a CEW has been used on them. It is theorized that CEWs may contribute to these deaths by impairing respiration. Objectives: To examine the respiratory effects of CEWs. Methods: Human volunteers received a 15-second application of electrical current from a CEW while wearing a respiratory measurement device. Common respiratory parameters were collected before, during, and after exposure. Health histories and demographic information were also collected. Results: Fifty-two subjects were analyzed. Thirty-four underwent a 15-second continuous exposure, and 18 underwent three 5-second burst exposures. In the continuous application group, the baseline mean tidal volume of 1.1 L increased to 1.8 L during application, the baseline end-tidal CO2 level went from 40.5 mm Hg to 37.3 mm Hg after exposure, the baseline end-tidal oxygen level went from 118.7 mm Hg to 121.3 mm Hg after exposure, and the baseline respiratory rate went from 15.9 breaths/min to 16.4 breaths/min after exposure. In the 5-second burst group, the baseline mean tidal volume increased to 1.85 L during application, the baseline end-tidal CO2 level went from 40.9 mm Hg to 39.1 mm Hg after exposure, the baseline end-tidal oxygen level went from 123.1 mm Hg to 127.0 mm Hg after exposure, and the baseline respiratory rate went from 13.8 breaths/min to 14.6 breaths/min after exposure. Conclusions: Prolonged CEW application did not impair respiratory parameters in this population of volunteers. Further study is recommended to validate these findings in other populations.
Original language | English (US) |
---|---|
Pages (from-to) | 197-201 |
Number of pages | 5 |
Journal | Academic Emergency Medicine |
Volume | 14 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2007 |
Bibliographical note
Copyright:Copyright 2008 Elsevier B.V., All rights reserved.
Keywords
- TASER
- conducted electrical weapon
- electronic control device
- in-custody death
- respiratory