Resilient ZnO nanowires in an irradiation environment: An in situ study

C. Sun, B. P. Uberuaga, L. Yin, J. Li, Y. Chen, M. A. Kirk, M. Li, S. A. Maloy, H. Wang, C. Yu, X. Zhang

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

ZnO nanowires (NWs) have been extensively studied for various device applications. Although these nanowires are often suspected to be impractical and highly unstable under hostile radiation environments, to date little is known on their radiation tolerance. Here, we show outstanding resilience of ZnO NWs by using in situ Kr ion irradiation at room temperature inside a transmission electron microscope. Our studies show that ZnO nanowires with certain diameters become nearly immune to radiation damage due to the existence of dislocation loop denuded zones. A remarkable size effect also holds: the smaller the nanowire diameter, the lower the defect density. Rate theory modeling suggests that the size effect arises from fast interstitial migration and a limit in size to which interstitial loops can grow. In situ studies also revealed a surprising phenomenon: the pristine prismatic loops can prevail over the strongest known defect sinks, free surfaces, to trap radiation-induced defect clusters. This study comprises the first critical step toward in-depth understanding of radiation response of functional oxide nanowires for electronic device applications in extreme environments.

Original languageEnglish (US)
Pages (from-to)156-163
Number of pages8
JournalActa Materialia
Volume95
DOIs
StatePublished - Jun 4 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords

  • Defect denuded zone
  • Extreme environments
  • Radiation damage
  • ZnO nanowires

Fingerprint

Dive into the research topics of 'Resilient ZnO nanowires in an irradiation environment: An in situ study'. Together they form a unique fingerprint.

Cite this