Abstract
In this paper, we investigate the use of variable speed limits for resilient operation of transportation networks, which are modeled as dynamical flow networks under local routing decisions. In such systems, some external inflow is injected to the so-called origin nodes of the network. The total inflow arriving at each node is routed to its operational outgoing links based on their current particle densities. The density on each link has first order dynamics driven by the difference of its incoming and outgoing flows. A link irreversibly fails if it reaches its jam density. Such failures may propagate in the network and cause a systemic failure. We show that larger link capacities do not necessarily help in preventing systemic failures under local routing. Accordingly, we propose the use of variable speed limits to operate the links below their capacities, when necessary, to compensate for the lack of global information and coordination in routing decisions. Our main result shows that systemic failures under feasible external inflows can always be averted through a proper selection of speed limits if the routing decisions are sufficiently responsive to local congestion and the network is initially uncongested. This is an attractive feature as it is much easier in practice to adjust the speed limits than to build more physical capacity or to alter routing decisions that are determined by social behavior.
Original language | English (US) |
---|---|
Title of host publication | 2017 American Control Conference, ACC 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 5623-5628 |
Number of pages | 6 |
ISBN (Electronic) | 9781509059928 |
DOIs | |
State | Published - Jun 29 2017 |
Externally published | Yes |
Event | 2017 American Control Conference, ACC 2017 - Seattle, United States Duration: May 24 2017 → May 26 2017 |
Publication series
Name | Proceedings of the American Control Conference |
---|---|
ISSN (Print) | 0743-1619 |
Other
Other | 2017 American Control Conference, ACC 2017 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 5/24/17 → 5/26/17 |
Bibliographical note
Publisher Copyright:© 2017 American Automatic Control Council (AACC).