Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): Study rationale and protocol

Katherine L. Dickinson, Ernest Kanyomse, Ricardo Piedrahita, Evan Coffey, Isaac J. Rivera, James Adoctor, Rex Alirigia, Didier Muvandimwe, Mackenzie Dove, Vanja Dukic, Mary H. Hayden, David Diaz-Sanchez, Adoctor Victor Abisiba, Dominic Anaseba, Yolanda Hagar, Nicholas Masson, Andrew Monaghan, Atsu Titiati, Daniel F. Steinhoff, Yueh Ya HsuRachael Kaspar, Bre'Anna Brooks, Abraham Hodgson, Michael Hannigan, Abraham Rexford Oduro, Christine Wiedinmyer

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Background: Cooking over open fires using solid fuels is both common practice throughout much of the world and widely recognized to contribute to human health, environmental, and social problems. The public health burden of household air pollution includes an estimated four million premature deaths each year. To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes. Methods/Design: REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) is an ongoing interdisciplinary randomized cookstove intervention study in the Kassena-Nankana District of Northern Ghana. The study tests two types of biomass burning stoves that have the potential to meet local cooking needs and represent different "rungs" in the cookstove technology ladder: a locally-made low-tech rocket stove and the imported, highly efficient Philips gasifier stove. Intervention households were randomized into four different groups, three of which received different combinations of two improved stoves, while the fourth group serves as a control for the duration of the study. Diverse measurements assess different points along the causal chain linking the intervention to final outcomes of interest. We assess stove use and cooking behavior, cooking emissions, household air pollution and personal exposure, health burden, and local to regional air quality. Integrated analysis and modeling will tackle a range of interdisciplinary science questions, including examining ambient exposures among the regional population, assessing how those exposures might change with different technologies and behaviors, and estimating the comparative impact of local behavior and technological changes versus regional climate variability and change on local air quality and health outcomes. Discussion: REACCTING is well-poised to generate useful data on the impact of a cookstove intervention on a wide range of outcomes. By comparing different technologies side by side and employing an interdisciplinary approach to study this issue from multiple perspectives, this study may help to inform future efforts to improve health and quality of life for populations currently relying on open fires for their cooking needs.

Original languageEnglish (US)
Article number126
JournalBMC public health
Volume15
Issue number1
DOIs
StatePublished - Dec 12 2015
Externally publishedYes

Bibliographical note

Funding Information:
KD led the social science and health components of the study (design, data collection and analysis), collaborated on the overall study design and integration, wrote and edited the manuscript. EK managed all aspects of project implementation in the field, participated in pretesting and project development efforts, aided in writing and editing the manuscript. RP designed, collected, and analyzed data on stove use, personal exposure, emissions, and air quality, conducted review of literature, wrote substantial portions of the manuscript. EC designed, collected, and analyzed data on stove use, personal exposure, emissions, and air quality, conducted review of literature, wrote substantial portions of the manuscript. IR collaborated on social science data collection and analysis, reviewed literature, prepared map figures, contributed to writing of manuscript. JA participated in survey design and pretesting, conducted community entry activities, contributed to writing and editing of manuscript. RA participated in survey design and pretesting, conducted community entry activities, contributed to writing and editing of manuscript. DM designed, collected, and analyzed data on stove emissions, conducted review of literature, contributed to writing of manuscript. MD led development of Gyapa stove model and stove distribution methodology, contributed to writing and editing of manuscript. VD conducted formative research on health issues in study area, collaborated on overall study design and integration, edited manuscript. Ma.H conducted formative research on health issues in study area, contributed to design of social science and health measurement approaches, collaborated on overall study design and integration, edited manuscript. DD-S collaborated on design of health measurements, edited manuscript. VA participated in survey design and pretesting, conducted community entry activities, contributed to writing and editing of manuscript. DA participated in survey design and pretesting, conducted community entry activities, contributed to writing and editing of manuscript. YC-HS developed health modeling methods, edited manuscript. NM designed, collected, and analyzed data on stove emissions, edited manuscript. AM contributed to design of climate modeling component, wrote and edited manuscript sections. AT contributed to development of Gyapa stove model and stove distribution methodology, contributed to writing and editing of manuscript. DS contributed to climate modeling component of study, aided in survey data processing, edited manuscript. Y-YH aided in survey data processing and analysis, edited manuscript. RK aided in survey data processing and analysis, edited manuscript. BB aided in survey data processing and analysis, edited manuscript. AH conducted formative research on health issues in study area, facilitated collaboration between US and Ghana institutions to enable project development and implementation, edited manuscript. Mi.H served as principal investigator on EPA grant funding project, led physical science components of project, wrote and edited manuscript. AO collaborated on the overall study design, all aspects of project implementation in the field, provided data from HDSS, edited manuscript. CW served as principal investigator on NSF grant funding project, managed all aspects of project development and implementation, coordinated collaboration between US and Ghana institutions, led design of regional air quality and climate modeling study components, wrote and edited manuscript. All authors read and approved the final manuscript.

Publisher Copyright:
© 2015 Dickinson et al.; licensee BioMed Central.

Keywords

  • Cookstoves
  • Global health
  • Household air pollution
  • Randomized intervention study
  • Study protocol

Fingerprint

Dive into the research topics of 'Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): Study rationale and protocol'. Together they form a unique fingerprint.

Cite this