TY - JOUR
T1 - Reprint of
T2 - Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection
AU - Tang, Wentao
AU - Allman, Andrew
AU - Babaei Pourkargar, Davood
AU - Daoutidis, Prodromos
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2018/8/4
Y1 - 2018/8/4
N2 - Distributed optimization, based on a decomposition of the entire optimization problem, has been applied to many complex decision making problems in process systems engineering, including nonlinear model predictive control. While decomposition techniques have been widely adopted, it remains an open problem how to optimally decompose an optimization problem into a distributed structure. In this work, we propose to use community detection in network representations of optimization problems as a systematic method of partitioning the optimization variables into groups, such that the variables in the same groups generally share more constraints than variables between different groups. The proposed method is applied to the decomposition of the optimal control problem involved in the nonlinear model predictive control of a reactor-separator process, and the quality of the resulting decomposition is examined by the resulting control performance and computational time. Our result suggests that community detection in network representations of the optimization problem generates decompositions with improvements in computational performance as well as a good optimality of the solution.
AB - Distributed optimization, based on a decomposition of the entire optimization problem, has been applied to many complex decision making problems in process systems engineering, including nonlinear model predictive control. While decomposition techniques have been widely adopted, it remains an open problem how to optimally decompose an optimization problem into a distributed structure. In this work, we propose to use community detection in network representations of optimization problems as a systematic method of partitioning the optimization variables into groups, such that the variables in the same groups generally share more constraints than variables between different groups. The proposed method is applied to the decomposition of the optimal control problem involved in the nonlinear model predictive control of a reactor-separator process, and the quality of the resulting decomposition is examined by the resulting control performance and computational time. Our result suggests that community detection in network representations of the optimization problem generates decompositions with improvements in computational performance as well as a good optimality of the solution.
KW - Community detection
KW - Distributed optimization
KW - Network decomposition
KW - Nonlinear model predictive control
UR - http://www.scopus.com/inward/record.url?scp=85055051736&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055051736&partnerID=8YFLogxK
U2 - 10.1016/j.compchemeng.2018.10.011
DO - 10.1016/j.compchemeng.2018.10.011
M3 - Article
AN - SCOPUS:85055051736
SN - 0098-1354
VL - 116
SP - 144
EP - 155
JO - Computers and Chemical Engineering
JF - Computers and Chemical Engineering
ER -