Repair of single-stranded DNA nicks, gaps, and loops in mammalian cells

D. Ayares, D. Ganea, L. Chekuri, C. R. Campbell, R. Kucherlapati

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

We studied the ability of mammalian cells to repair single-stranded nicks, gaps, and loops in DNA duplexes. Heteroduplexes prepared from derivatives of the shuttle vector pSV2neo were introduced into monkey COS cells. After replication, the plasmids were recovered and used to transform Escherichia coli. Plasmid DNA from the recovered colonies was tested for repair at each of six different sites. We observed that mammalian cells are capable of repairing single-stranded gaps and free single-stranded ends most efficiently. Regions containing twin loops were recognized, and one of the loops was excised. Portions of the molecules containing small single loops were also repaired. Markers which were 58 necleotides apart were never corepaired. The mechanisms involved in heteroduplex repair in mammalian cells seem to be similar to those involved in repairing DNA lesions caused by physical and chemical agents.

Original languageEnglish (US)
Pages (from-to)1656-1662
Number of pages7
JournalMolecular and cellular biology
Volume7
Issue number5
DOIs
StatePublished - 1987

Fingerprint Dive into the research topics of 'Repair of single-stranded DNA nicks, gaps, and loops in mammalian cells'. Together they form a unique fingerprint.

Cite this