Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin

Carmen Arpa, Laura Ceballos, María Victoria Fuentes, Jorge Perdigao

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Statement of problem: The polymerization of computer-aided design and computer-aided manufacturing (CAD-CAM) composite resins during their manufacture enhances their physical properties and biocompatibility but might compromise their reparability. Purpose: The purpose of this in vitro study was to determine the microtensile bond strength and nanoleakage (NL) of aged LAVA Ultimate (LU) CAD-CAM composite resin after different repair protocols. Material and methods: Fifty-eight LU miniblocks were prepared, thermocycled (10 000 cycles, 5°C to 55°C), and assigned to 10 surface pretreatment and bonding protocols: (1) tribochemical silica coating (CoJet, CoJet Sand; 3M ESPE)+Scotchbond Universal Adhesive (SBU; 3M ESPE); (2) CoJet+silane (SI, ESPE Sil; 3M ESPE)+Adper Scotchbond 1 XT Adhesive (XT; 3M ESPE); (3) CoJet+10-methacryloyloxydecyl dihydrogen phosphate–based silane (MO; Monobond Plus; Ivoclar Vivadent AG)+XT; (4) CoJet+XT; (5) 30-μm alumina airborne-particle abrasion (AL)+SBU; (6) AL+SI+XT; (7) AL+MO+XT; (8) AL+XT; (9) no pretreatment+SBU; and (10) no pretreatment+XT. All blocks were repaired using the Filtek Supreme XTE (3M ESPE) composite resin. Stick-shaped specimens (0.9×0.9 mm) were obtained and submitted to microtensile bond strength (μTBS) and %NL testing after 24 hours. μTBS data were analyzed with 1-way ANOVA, followed by the Tukey post hoc test, and NL data with nonparametric Kruskal-Wallis and Dunn tests (α=.05). Results: For μTBS, CoJet, and AL pretreatments showed significantly higher mean μTBS, especially when used together with SBU. No pretreatment+XT yielded the lowest mean μTBS. For NL, marginal sealing improved significantly after the use of SBU regardless of the surface treatment. This improvement was only statistically different after tribochemical silica coating. Conclusions: Airborne-particle abrasion with alumina particles, silica coated or not, together with the application of SBU resulted in the highest mean μTBS. The lowest %NL was recorded when aged LU blocks were repaired using SBU.

Original languageEnglish (US)
Pages (from-to)523-530
Number of pages8
JournalJournal of Prosthetic Dentistry
Volume121
Issue number3
DOIs
StatePublished - Mar 1 2019

Fingerprint

Computer-Aided Design
Composite Resins
Silicon Dioxide
Silanes
Aluminum Oxide
Polymerization
Analysis of Variance
Scotchbond

PubMed: MeSH publication types

  • Journal Article

Cite this

Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin. / Arpa, Carmen; Ceballos, Laura; Fuentes, María Victoria; Perdigao, Jorge.

In: Journal of Prosthetic Dentistry, Vol. 121, No. 3, 01.03.2019, p. 523-530.

Research output: Contribution to journalArticle

Arpa, Carmen ; Ceballos, Laura ; Fuentes, María Victoria ; Perdigao, Jorge. / Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin. In: Journal of Prosthetic Dentistry. 2019 ; Vol. 121, No. 3. pp. 523-530.
@article{8a3c928726e149d69bb70e627c001da6,
title = "Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin",
abstract = "Statement of problem: The polymerization of computer-aided design and computer-aided manufacturing (CAD-CAM) composite resins during their manufacture enhances their physical properties and biocompatibility but might compromise their reparability. Purpose: The purpose of this in vitro study was to determine the microtensile bond strength and nanoleakage (NL) of aged LAVA Ultimate (LU) CAD-CAM composite resin after different repair protocols. Material and methods: Fifty-eight LU miniblocks were prepared, thermocycled (10 000 cycles, 5°C to 55°C), and assigned to 10 surface pretreatment and bonding protocols: (1) tribochemical silica coating (CoJet, CoJet Sand; 3M ESPE)+Scotchbond Universal Adhesive (SBU; 3M ESPE); (2) CoJet+silane (SI, ESPE Sil; 3M ESPE)+Adper Scotchbond 1 XT Adhesive (XT; 3M ESPE); (3) CoJet+10-methacryloyloxydecyl dihydrogen phosphate–based silane (MO; Monobond Plus; Ivoclar Vivadent AG)+XT; (4) CoJet+XT; (5) 30-μm alumina airborne-particle abrasion (AL)+SBU; (6) AL+SI+XT; (7) AL+MO+XT; (8) AL+XT; (9) no pretreatment+SBU; and (10) no pretreatment+XT. All blocks were repaired using the Filtek Supreme XTE (3M ESPE) composite resin. Stick-shaped specimens (0.9×0.9 mm) were obtained and submitted to microtensile bond strength (μTBS) and {\%}NL testing after 24 hours. μTBS data were analyzed with 1-way ANOVA, followed by the Tukey post hoc test, and NL data with nonparametric Kruskal-Wallis and Dunn tests (α=.05). Results: For μTBS, CoJet, and AL pretreatments showed significantly higher mean μTBS, especially when used together with SBU. No pretreatment+XT yielded the lowest mean μTBS. For NL, marginal sealing improved significantly after the use of SBU regardless of the surface treatment. This improvement was only statistically different after tribochemical silica coating. Conclusions: Airborne-particle abrasion with alumina particles, silica coated or not, together with the application of SBU resulted in the highest mean μTBS. The lowest {\%}NL was recorded when aged LU blocks were repaired using SBU.",
author = "Carmen Arpa and Laura Ceballos and Fuentes, {Mar{\'i}a Victoria} and Jorge Perdigao",
year = "2019",
month = "3",
day = "1",
doi = "10.1016/j.prosdent.2018.05.013",
language = "English (US)",
volume = "121",
pages = "523--530",
journal = "Journal of Prosthetic Dentistry",
issn = "0022-3913",
publisher = "Mosby Inc.",
number = "3",

}

TY - JOUR

T1 - Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin

AU - Arpa, Carmen

AU - Ceballos, Laura

AU - Fuentes, María Victoria

AU - Perdigao, Jorge

PY - 2019/3/1

Y1 - 2019/3/1

N2 - Statement of problem: The polymerization of computer-aided design and computer-aided manufacturing (CAD-CAM) composite resins during their manufacture enhances their physical properties and biocompatibility but might compromise their reparability. Purpose: The purpose of this in vitro study was to determine the microtensile bond strength and nanoleakage (NL) of aged LAVA Ultimate (LU) CAD-CAM composite resin after different repair protocols. Material and methods: Fifty-eight LU miniblocks were prepared, thermocycled (10 000 cycles, 5°C to 55°C), and assigned to 10 surface pretreatment and bonding protocols: (1) tribochemical silica coating (CoJet, CoJet Sand; 3M ESPE)+Scotchbond Universal Adhesive (SBU; 3M ESPE); (2) CoJet+silane (SI, ESPE Sil; 3M ESPE)+Adper Scotchbond 1 XT Adhesive (XT; 3M ESPE); (3) CoJet+10-methacryloyloxydecyl dihydrogen phosphate–based silane (MO; Monobond Plus; Ivoclar Vivadent AG)+XT; (4) CoJet+XT; (5) 30-μm alumina airborne-particle abrasion (AL)+SBU; (6) AL+SI+XT; (7) AL+MO+XT; (8) AL+XT; (9) no pretreatment+SBU; and (10) no pretreatment+XT. All blocks were repaired using the Filtek Supreme XTE (3M ESPE) composite resin. Stick-shaped specimens (0.9×0.9 mm) were obtained and submitted to microtensile bond strength (μTBS) and %NL testing after 24 hours. μTBS data were analyzed with 1-way ANOVA, followed by the Tukey post hoc test, and NL data with nonparametric Kruskal-Wallis and Dunn tests (α=.05). Results: For μTBS, CoJet, and AL pretreatments showed significantly higher mean μTBS, especially when used together with SBU. No pretreatment+XT yielded the lowest mean μTBS. For NL, marginal sealing improved significantly after the use of SBU regardless of the surface treatment. This improvement was only statistically different after tribochemical silica coating. Conclusions: Airborne-particle abrasion with alumina particles, silica coated or not, together with the application of SBU resulted in the highest mean μTBS. The lowest %NL was recorded when aged LU blocks were repaired using SBU.

AB - Statement of problem: The polymerization of computer-aided design and computer-aided manufacturing (CAD-CAM) composite resins during their manufacture enhances their physical properties and biocompatibility but might compromise their reparability. Purpose: The purpose of this in vitro study was to determine the microtensile bond strength and nanoleakage (NL) of aged LAVA Ultimate (LU) CAD-CAM composite resin after different repair protocols. Material and methods: Fifty-eight LU miniblocks were prepared, thermocycled (10 000 cycles, 5°C to 55°C), and assigned to 10 surface pretreatment and bonding protocols: (1) tribochemical silica coating (CoJet, CoJet Sand; 3M ESPE)+Scotchbond Universal Adhesive (SBU; 3M ESPE); (2) CoJet+silane (SI, ESPE Sil; 3M ESPE)+Adper Scotchbond 1 XT Adhesive (XT; 3M ESPE); (3) CoJet+10-methacryloyloxydecyl dihydrogen phosphate–based silane (MO; Monobond Plus; Ivoclar Vivadent AG)+XT; (4) CoJet+XT; (5) 30-μm alumina airborne-particle abrasion (AL)+SBU; (6) AL+SI+XT; (7) AL+MO+XT; (8) AL+XT; (9) no pretreatment+SBU; and (10) no pretreatment+XT. All blocks were repaired using the Filtek Supreme XTE (3M ESPE) composite resin. Stick-shaped specimens (0.9×0.9 mm) were obtained and submitted to microtensile bond strength (μTBS) and %NL testing after 24 hours. μTBS data were analyzed with 1-way ANOVA, followed by the Tukey post hoc test, and NL data with nonparametric Kruskal-Wallis and Dunn tests (α=.05). Results: For μTBS, CoJet, and AL pretreatments showed significantly higher mean μTBS, especially when used together with SBU. No pretreatment+XT yielded the lowest mean μTBS. For NL, marginal sealing improved significantly after the use of SBU regardless of the surface treatment. This improvement was only statistically different after tribochemical silica coating. Conclusions: Airborne-particle abrasion with alumina particles, silica coated or not, together with the application of SBU resulted in the highest mean μTBS. The lowest %NL was recorded when aged LU blocks were repaired using SBU.

UR - http://www.scopus.com/inward/record.url?scp=85055996285&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055996285&partnerID=8YFLogxK

U2 - 10.1016/j.prosdent.2018.05.013

DO - 10.1016/j.prosdent.2018.05.013

M3 - Article

VL - 121

SP - 523

EP - 530

JO - Journal of Prosthetic Dentistry

JF - Journal of Prosthetic Dentistry

SN - 0022-3913

IS - 3

ER -