Reliable PUF-Based Local Authentication With Self-Correction

Yingjie Lao, Bo Yuan, Chris H. Kim, Keshab K. Parhi

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Physical unclonable functions (PUFs) can extract chip-unique signatures from integrated circuits (ICs) by exploiting the uncontrollable randomness due to manufacturing process variations. These signatures can then be used for many hardware security applications including authentication, anti-counterfeiting, IC metering, signature generation, and obfuscation. However, most of these applications require error correcting methods to produce consistent PUF responses across different environmental conditions. This paper presents a novel method to enable lightweight, secure, and reliable PUF-based authentication. A two-level finite-state machine (FSM) is proposed to correct erroneous bits generated by environmental variations (e.g., temperature, voltage, and aging variations). In the proposed method, each PUF response is mapped to a key during design phase. The actual key can be determined from the PUF response only after the chip is fabricated. Because the key is not known to the foundry, the proposed approach prevents counterfeiting. The performance of the proposed method and other applications are also discussed. Our experimental results show that the cost of the proposed self-correcting two-level FSM is significantly less than that of the commonly used error correcting codes. It is shown that the proposed self-correcting FSM consumes about 2× to 10× less area and about 20× to 100× less power than the Bose-Chaudhuri-Hochquenghem codes.

Original languageEnglish (US)
Article number7470631
Pages (from-to)201-213
Number of pages13
JournalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Volume36
Issue number2
DOIs
StatePublished - Feb 2017

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Chip signature generation
  • finite-state machine (FSM)
  • hardware security
  • local authentication
  • physical unclonable function (PUF)
  • self-correction

Fingerprint

Dive into the research topics of 'Reliable PUF-Based Local Authentication With Self-Correction'. Together they form a unique fingerprint.

Cite this