Relationship between the efficacy of cardiac cell therapy and the inhibition of differentiation of human iPSC-Derived nonmyocyte cardiac cells into Myofibroblast-like cells

Ling Gao, Libang Yang, Lu Wang, Zhaohui Geng, Yuhua Wei, Glenn Gourley, Jianyi Zhang

Research output: Contribution to journalArticle

Abstract

Rationale: Myofibroblasts are believed to evolve from precursor cells; however, whether noncardiomyocyte cardiac cells (NMCCs; ie, endothelial cells, smooth muscle cells, pericytes, and fibroblasts) that have been derived from human-induced pluripotent stem cells (hiPSCs) can transdifferentiate into myofibroblast-like cells, and if so, whether this process reduces the efficacy of hiPSC-NMCC therapy, is unknown. Objective: To determine whether hiPSC-NMCCs can differentiate to myofibroblast-like cells and whether limiting the transdifferentiation of hiPSC-NMCCs can improve their effectiveness for myocardial repair. Methods and Results: When endothelial cells, smooth muscle cells, pericytes, and fibroblasts that had been generated from hiPSCs were cultured with TGF-β (transforming growth factor-β), the expression of myofibroblast markers increased, whereas endothelial cell, smooth muscle cell, pericyte, and fibroblast marker expression declined. TGF-β-associated myofibroblast differentiation was accompanied by increases in the signaling activity of Smad, Snail, and mTOR (mammalian target of rapamycin). However, measures of pathway activation, proliferation, apoptosis, migration, and protein expression in hiPSC-endothelial cell-derived, smooth muscle cellderived, pericyte-derived, and fibroblast-derived myofibroblast-like cells differed. Furthermore, when hiPSCNMCCs were transplanted into the hearts of mice after myocardial infarction, ∼21% to 35% of the transplanted hiPSC-NMCCs expressed myofibroblast markers 1 week later, compared with <7% of transplanted cells (P<0.01, each cell type) in animals that were treated with both hiPSC-NMCCs and the TGF-β inhibitor galunisertib. Galunisertib coadministration was also associated with significant improvements in fibrotic area, left ventricular dilatation, vascular density, and cardiac function. Conclusions: hiPSC-NMCCs differentiate into myofibroblast-like cells when cultured with TGF-β or when transplanted into infarcted mouse hearts, and the phenotypes of the myofibroblast-like cells can differ depending on the lineage of origin. TGF-β inhibition significantly improved the efficacy of transplanted hiPSC-NMCCs for cardiac repair, perhaps by limiting the differentiation of hiPSC-NMCCs into myofibroblast-like cells.

Original languageEnglish (US)
Pages (from-to)1313-1325
Number of pages13
JournalCirculation research
Volume123
Issue number12
DOIs
StatePublished - Jan 1 2018

Fingerprint

Induced Pluripotent Stem Cells
Myofibroblasts
Cell- and Tissue-Based Therapy
Transforming Growth Factors
Pericytes
LY-2157299
Endothelial Cells
Fibroblasts
Smooth Muscle Myocytes
Growth Inhibitors
Sirolimus
Smooth Muscle
Blood Vessels
Dilatation
Cultured Cells
Myocardial Infarction

Keywords

  • animals
  • dilatation
  • endothelial cells
  • mice
  • myocardial infarction

Cite this

Relationship between the efficacy of cardiac cell therapy and the inhibition of differentiation of human iPSC-Derived nonmyocyte cardiac cells into Myofibroblast-like cells. / Gao, Ling; Yang, Libang; Wang, Lu; Geng, Zhaohui; Wei, Yuhua; Gourley, Glenn; Zhang, Jianyi.

In: Circulation research, Vol. 123, No. 12, 01.01.2018, p. 1313-1325.

Research output: Contribution to journalArticle

@article{adb0ee32afad417ba20d0ca2bcdcccc5,
title = "Relationship between the efficacy of cardiac cell therapy and the inhibition of differentiation of human iPSC-Derived nonmyocyte cardiac cells into Myofibroblast-like cells",
abstract = "Rationale: Myofibroblasts are believed to evolve from precursor cells; however, whether noncardiomyocyte cardiac cells (NMCCs; ie, endothelial cells, smooth muscle cells, pericytes, and fibroblasts) that have been derived from human-induced pluripotent stem cells (hiPSCs) can transdifferentiate into myofibroblast-like cells, and if so, whether this process reduces the efficacy of hiPSC-NMCC therapy, is unknown. Objective: To determine whether hiPSC-NMCCs can differentiate to myofibroblast-like cells and whether limiting the transdifferentiation of hiPSC-NMCCs can improve their effectiveness for myocardial repair. Methods and Results: When endothelial cells, smooth muscle cells, pericytes, and fibroblasts that had been generated from hiPSCs were cultured with TGF-β (transforming growth factor-β), the expression of myofibroblast markers increased, whereas endothelial cell, smooth muscle cell, pericyte, and fibroblast marker expression declined. TGF-β-associated myofibroblast differentiation was accompanied by increases in the signaling activity of Smad, Snail, and mTOR (mammalian target of rapamycin). However, measures of pathway activation, proliferation, apoptosis, migration, and protein expression in hiPSC-endothelial cell-derived, smooth muscle cellderived, pericyte-derived, and fibroblast-derived myofibroblast-like cells differed. Furthermore, when hiPSCNMCCs were transplanted into the hearts of mice after myocardial infarction, ∼21{\%} to 35{\%} of the transplanted hiPSC-NMCCs expressed myofibroblast markers 1 week later, compared with <7{\%} of transplanted cells (P<0.01, each cell type) in animals that were treated with both hiPSC-NMCCs and the TGF-β inhibitor galunisertib. Galunisertib coadministration was also associated with significant improvements in fibrotic area, left ventricular dilatation, vascular density, and cardiac function. Conclusions: hiPSC-NMCCs differentiate into myofibroblast-like cells when cultured with TGF-β or when transplanted into infarcted mouse hearts, and the phenotypes of the myofibroblast-like cells can differ depending on the lineage of origin. TGF-β inhibition significantly improved the efficacy of transplanted hiPSC-NMCCs for cardiac repair, perhaps by limiting the differentiation of hiPSC-NMCCs into myofibroblast-like cells.",
keywords = "animals, dilatation, endothelial cells, mice, myocardial infarction",
author = "Ling Gao and Libang Yang and Lu Wang and Zhaohui Geng and Yuhua Wei and Glenn Gourley and Jianyi Zhang",
year = "2018",
month = "1",
day = "1",
doi = "10.1161/CIRCRESAHA.118.313094",
language = "English (US)",
volume = "123",
pages = "1313--1325",
journal = "Circulation Research",
issn = "0009-7330",
publisher = "Lippincott Williams and Wilkins",
number = "12",

}

TY - JOUR

T1 - Relationship between the efficacy of cardiac cell therapy and the inhibition of differentiation of human iPSC-Derived nonmyocyte cardiac cells into Myofibroblast-like cells

AU - Gao, Ling

AU - Yang, Libang

AU - Wang, Lu

AU - Geng, Zhaohui

AU - Wei, Yuhua

AU - Gourley, Glenn

AU - Zhang, Jianyi

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Rationale: Myofibroblasts are believed to evolve from precursor cells; however, whether noncardiomyocyte cardiac cells (NMCCs; ie, endothelial cells, smooth muscle cells, pericytes, and fibroblasts) that have been derived from human-induced pluripotent stem cells (hiPSCs) can transdifferentiate into myofibroblast-like cells, and if so, whether this process reduces the efficacy of hiPSC-NMCC therapy, is unknown. Objective: To determine whether hiPSC-NMCCs can differentiate to myofibroblast-like cells and whether limiting the transdifferentiation of hiPSC-NMCCs can improve their effectiveness for myocardial repair. Methods and Results: When endothelial cells, smooth muscle cells, pericytes, and fibroblasts that had been generated from hiPSCs were cultured with TGF-β (transforming growth factor-β), the expression of myofibroblast markers increased, whereas endothelial cell, smooth muscle cell, pericyte, and fibroblast marker expression declined. TGF-β-associated myofibroblast differentiation was accompanied by increases in the signaling activity of Smad, Snail, and mTOR (mammalian target of rapamycin). However, measures of pathway activation, proliferation, apoptosis, migration, and protein expression in hiPSC-endothelial cell-derived, smooth muscle cellderived, pericyte-derived, and fibroblast-derived myofibroblast-like cells differed. Furthermore, when hiPSCNMCCs were transplanted into the hearts of mice after myocardial infarction, ∼21% to 35% of the transplanted hiPSC-NMCCs expressed myofibroblast markers 1 week later, compared with <7% of transplanted cells (P<0.01, each cell type) in animals that were treated with both hiPSC-NMCCs and the TGF-β inhibitor galunisertib. Galunisertib coadministration was also associated with significant improvements in fibrotic area, left ventricular dilatation, vascular density, and cardiac function. Conclusions: hiPSC-NMCCs differentiate into myofibroblast-like cells when cultured with TGF-β or when transplanted into infarcted mouse hearts, and the phenotypes of the myofibroblast-like cells can differ depending on the lineage of origin. TGF-β inhibition significantly improved the efficacy of transplanted hiPSC-NMCCs for cardiac repair, perhaps by limiting the differentiation of hiPSC-NMCCs into myofibroblast-like cells.

AB - Rationale: Myofibroblasts are believed to evolve from precursor cells; however, whether noncardiomyocyte cardiac cells (NMCCs; ie, endothelial cells, smooth muscle cells, pericytes, and fibroblasts) that have been derived from human-induced pluripotent stem cells (hiPSCs) can transdifferentiate into myofibroblast-like cells, and if so, whether this process reduces the efficacy of hiPSC-NMCC therapy, is unknown. Objective: To determine whether hiPSC-NMCCs can differentiate to myofibroblast-like cells and whether limiting the transdifferentiation of hiPSC-NMCCs can improve their effectiveness for myocardial repair. Methods and Results: When endothelial cells, smooth muscle cells, pericytes, and fibroblasts that had been generated from hiPSCs were cultured with TGF-β (transforming growth factor-β), the expression of myofibroblast markers increased, whereas endothelial cell, smooth muscle cell, pericyte, and fibroblast marker expression declined. TGF-β-associated myofibroblast differentiation was accompanied by increases in the signaling activity of Smad, Snail, and mTOR (mammalian target of rapamycin). However, measures of pathway activation, proliferation, apoptosis, migration, and protein expression in hiPSC-endothelial cell-derived, smooth muscle cellderived, pericyte-derived, and fibroblast-derived myofibroblast-like cells differed. Furthermore, when hiPSCNMCCs were transplanted into the hearts of mice after myocardial infarction, ∼21% to 35% of the transplanted hiPSC-NMCCs expressed myofibroblast markers 1 week later, compared with <7% of transplanted cells (P<0.01, each cell type) in animals that were treated with both hiPSC-NMCCs and the TGF-β inhibitor galunisertib. Galunisertib coadministration was also associated with significant improvements in fibrotic area, left ventricular dilatation, vascular density, and cardiac function. Conclusions: hiPSC-NMCCs differentiate into myofibroblast-like cells when cultured with TGF-β or when transplanted into infarcted mouse hearts, and the phenotypes of the myofibroblast-like cells can differ depending on the lineage of origin. TGF-β inhibition significantly improved the efficacy of transplanted hiPSC-NMCCs for cardiac repair, perhaps by limiting the differentiation of hiPSC-NMCCs into myofibroblast-like cells.

KW - animals

KW - dilatation

KW - endothelial cells

KW - mice

KW - myocardial infarction

UR - http://www.scopus.com/inward/record.url?scp=85058870481&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058870481&partnerID=8YFLogxK

U2 - 10.1161/CIRCRESAHA.118.313094

DO - 10.1161/CIRCRESAHA.118.313094

M3 - Article

C2 - 30566050

AN - SCOPUS:85058870481

VL - 123

SP - 1313

EP - 1325

JO - Circulation Research

JF - Circulation Research

SN - 0009-7330

IS - 12

ER -