Abstract
We solve numerically the three-dimensional incompressible Navier-Stokes equations to simulate the flow in a cylindrical container of aspect ratio one with exactly counter-rotating lids for a range of Reynolds numbers for which the flow is steady and three dimensional (300≤Re≤850). In agreement with linear stability results [C. Nore et al., J. Fluid Mech. 511, 45 (2004)] we find steady, axisymmetric solutions for Re<300. For Re>300 the equatorial shear layer becomes unstable to steady azimuthal modes and a complex vortical flow emerges, which consists of cat's eye radial vortices at the shear layer and azimuthally inclined axial vortices. Upon the onset of the three-dimensional instability the Lagrangian dynamics of the flow become chaotic. A striking finding of our work is that there is an optimal Reynolds number at which the stirring rate in the chaotically advected flow is maximized. Above this Reynolds number, the integrable (unmixed) part of the flow begins to grow and the stirring rate is shown conclusively to decline. This finding is explained in terms of and appears to support a recently proposed theory of chaotic advection [I. Mezić, J. Fluid Mech. 431, 347 (2001)]. Furthermore, the calculated rate of decay of the stirring rate with Reynolds numbers is consistent with the Re-1/2 upper bound predicted by the theory.
Original language | English (US) |
---|---|
Article number | 053601 |
Journal | Physics of Fluids |
Volume | 18 |
Issue number | 5 |
DOIs | |
State | Published - May 2006 |
Bibliographical note
Funding Information:This work was supported by NSF Career Grant No. 9875691.