Regulation of mature ADAM17 by redox agents for L-selectin shedding

Yue Wang, Amy H. Herrera, Ying Li, Kiran K. Belani, Bruce Walcheck

Research output: Contribution to journalArticlepeer-review

97 Scopus citations


L-selectin is constitutively expressed by neutrophils and plays a key role in directing these cells to sites of inflammation. Upon neutrophil activation, L-selectin is rapidly and efficiently down-regulated from the cell surface by ectodomain shedding. We have directly shown that A disintegrin and metalloprotease 17 (ADAM17) is a primary and nonredundant sheddase of L-selection by activated neutrophils in vivo. Following cell activation, intracellular signals lead to the induction of ADAM17's enzymatic activity; however, the target of this inducer mechanism remains unclear. Our study provides evidence of an activation mechanism that involves the extracellular region of the mature form of cell surface ADAM17 and not its intracellular region. We demonstrate that the catalytic activity of purified ADAM17 lacking a prodomain and its intracellular region is diminished under mild reducing conditions by DTT and enhanced by H2O2 oxidation. Moreover, H2O2 reversed ADAM17 inhibition by DTT. The treatment of neutrophils with H2O2 also induced L-selectin shedding in an ADAM17-dependent manner. These findings suggest that thiol-disulfide conversion occurring in the extracellular region of ADAM17 may be involved in its activation. An analysis of ADAM17 revealed that within its disintegrin/cysteine-rich region are two highly conserved, vicinal cysteine sulfhydryl motifs (cysteine-X-X-cysteine), which are well-characterized targets for thiol-disulfide exchange in various other proteins. Using a cell-based ADAM17 reconstitution assay, we demonstrate that the cysteine-X-X-cysteine motifs are critical for L-selectin cleavage. Taken together, our findings suggest that reduction-oxidation modifications of cysteinyl sulfhydryl groups in mature ADAM17 may serve as a mechanism for regulating the shedding of L-selectin following neutrophil stimulation.

Original languageEnglish (US)
Pages (from-to)2449-2457
Number of pages9
JournalJournal of Immunology
Issue number4
StatePublished - Feb 15 2009

Fingerprint Dive into the research topics of 'Regulation of mature ADAM17 by redox agents for L-selectin shedding'. Together they form a unique fingerprint.

Cite this