Regulation of ion transport in the porcine intestinal tract by enteric neurotransmitters and hormones

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


In the present paper, the mechanisms underlying the neural and hormonal regulation of mucosal ion transport in the pig intestinal tract are reviewed. The active transport of NaCl by isolated sheets of porcine intestinal mucosa is modulated by cholinergic and non-cholinergic neurons of undetermined neurochemical identity that lie in the submucosa. The application of electrical field stimulation to mucosa-submucosa preparations from porcine jejunum, ileum, or colon produces rapid elevations in short-circuit current which are inhibited by tetrodotoxin or omega-conotoxin GVIA, blockers of neuronal Na+ and Ca2+ channels, respectively. In porcine ileum, these elevations in current are mimicked in large part by cholinergic agonists and have been attributed to anion secretion. The majority of classical neurotransmitters and gut peptides that have been examined to date increase active transepithelial anion secretion through interactions with G protein- coupled receptors associated with submucosal neurons or situated on the basolateral membranes of epithelial cells. A small number of neuropeptides interact with neuronal receptors to augment NaCl absorption or decrease anion secretion. Noradrenergic control of intestinal transport differs in the porcine small and large intestines, and displays considerable inter-species variability in its cellular underpinnings. Transport regulation by bombesin- like peptides may be mediated by receptors distributed in both the apical and basolateral membrane domains of epithelial cells in porcine colon. The transport process affected by these peptides may be linked to epithelial growth and differentiation. The pig intestinal tract appears to be a useful biological model for resolving the cellular mechanisms by which gut neurotransmitters and hormones act in regulating transepithelial ion fluxes. Its general relevance to human intestinal function is discussed.

Original languageEnglish (US)
Pages (from-to)309-317
Number of pages9
JournalComparative Biochemistry and Physiology - A Physiology
Issue number2
StatePublished - Oct 1997


  • Absorption
  • Bombesin
  • Norepinephrine
  • Pig
  • Secretion


Dive into the research topics of 'Regulation of ion transport in the porcine intestinal tract by enteric neurotransmitters and hormones'. Together they form a unique fingerprint.

Cite this