TY - JOUR
T1 - Regulation of human eosinophil NADPH oxidase activity
T2 - A central role for PKCδ
AU - Bankers-Fulbright, Jennifer L.
AU - Kita, Hirohito
AU - Gleich, Gerald J.
AU - O'Grady, Scott M.
PY - 2001
Y1 - 2001
N2 - Eosinophils play a primary role in the pathophysiology of asthma. In the lung, the activation state of the infiltrating eosinophils determines the extent of tissue damage. Interleukin-5 (IL-5) and leukotriene B4 (LTB4) are important signaling molecules involved in eosinophil recruitment and activation. However, the physiological processes that regulate these activation events are largely unknown. In this study we have examined the mechanisms of human eosinophil NADPH oxidase regulation by IL-5, LTB4, and phorbol ester (PMA). These stimuli activate a Zn2+-sensitive plasma membrane proton channel, and treatment of eosinophils with Zn2+ blocks superoxide production. We have demonstrated that eosinophil intracellular pH is not altered by IL-5 activation of NADPH oxidase. Additionally, PKCδ inhibitors block PMA, IL-5 and LTB4 mediated superoxide formation. Interestingly, the PKCδ-selective inhibitor, rottlerin, does not block proton channel activation by PMA indicating that the oxidase and the proton conductance are regulated at distinct phosphorylation sites. IL-5 and LTB4, but not PMA, stimulated superoxide production is also blocked by inhibitors of PI 3-kinase indicating that activation of this enzyme is an upstream event common to both receptor signaling pathways. Our results indicate that the G-protein-coupled LTB4 receptor and the IL-5 cytokine receptor converge on a common signaling pathway involving PI 3-kinase and PKCδ to regulate NADPH oxidase activity in human eosinophils.
AB - Eosinophils play a primary role in the pathophysiology of asthma. In the lung, the activation state of the infiltrating eosinophils determines the extent of tissue damage. Interleukin-5 (IL-5) and leukotriene B4 (LTB4) are important signaling molecules involved in eosinophil recruitment and activation. However, the physiological processes that regulate these activation events are largely unknown. In this study we have examined the mechanisms of human eosinophil NADPH oxidase regulation by IL-5, LTB4, and phorbol ester (PMA). These stimuli activate a Zn2+-sensitive plasma membrane proton channel, and treatment of eosinophils with Zn2+ blocks superoxide production. We have demonstrated that eosinophil intracellular pH is not altered by IL-5 activation of NADPH oxidase. Additionally, PKCδ inhibitors block PMA, IL-5 and LTB4 mediated superoxide formation. Interestingly, the PKCδ-selective inhibitor, rottlerin, does not block proton channel activation by PMA indicating that the oxidase and the proton conductance are regulated at distinct phosphorylation sites. IL-5 and LTB4, but not PMA, stimulated superoxide production is also blocked by inhibitors of PI 3-kinase indicating that activation of this enzyme is an upstream event common to both receptor signaling pathways. Our results indicate that the G-protein-coupled LTB4 receptor and the IL-5 cytokine receptor converge on a common signaling pathway involving PI 3-kinase and PKCδ to regulate NADPH oxidase activity in human eosinophils.
UR - http://www.scopus.com/inward/record.url?scp=0035160155&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035160155&partnerID=8YFLogxK
U2 - 10.1002/jcp.10022
DO - 10.1002/jcp.10022
M3 - Article
C2 - 11748588
AN - SCOPUS:0035160155
SN - 0021-9541
VL - 189
SP - 306
EP - 315
JO - Journal of cellular physiology
JF - Journal of cellular physiology
IS - 3
ER -